make pointed suspensions, wedges and spheres the default (in contrast to the unpointed ones), remove sphere_index

All HITs which automatically have a point are pointed without a 'p' in front. HITs which do not automatically have a point do still have a p (e.g. pushout/ppushout).

There were a lot of annoyances with spheres being indexed by N_{-1} with almost no extra generality. We now index the spheres by nat, making sphere 0 = pbool.
This commit is contained in:
Floris van Doorn 2017-07-20 15:01:40 +01:00
parent a02ea6b751
commit ddef24223b
17 changed files with 334 additions and 641 deletions

View file

@ -226,10 +226,10 @@ namespace EM
/- K(G, n+1) -/ /- K(G, n+1) -/
definition EMadd1 : → Type* definition EMadd1 : → Type*
| 0 := EM1 G | 0 := EM1 G
| (n+1) := ptrunc (n+2) (psusp (EMadd1 n)) | (n+1) := ptrunc (n+2) (susp (EMadd1 n))
definition EMadd1_succ [unfold_full] (n : ) : definition EMadd1_succ [unfold_full] (n : ) :
EMadd1 G (succ n) = ptrunc (n.+2) (psusp (EMadd1 G n)) := EMadd1 G (succ n) = ptrunc (n.+2) (susp (EMadd1 G n)) :=
idp idp
definition loop_EM2 : Ω[1] (EMadd1 G 1) ≃* EM1 G := definition loop_EM2 : Ω[1] (EMadd1 G 1) ≃* EM1 G :=
@ -239,7 +239,7 @@ namespace EM
begin begin
induction n with n IH, induction n with n IH,
{ apply is_conn_EM1 }, { apply is_conn_EM1 },
{ rewrite EMadd1_succ, esimp, exact _ } { rewrite EMadd1_succ, exact _ }
end end
definition is_trunc_EMadd1 [instance] (n : ) : is_trunc (n+1) (EMadd1 G n) := definition is_trunc_EMadd1 [instance] (n : ) : is_trunc (n+1) (EMadd1 G n) :=
@ -304,12 +304,12 @@ namespace EM
{ exact EM1_pmap e⁻¹ᵉ* (equiv.inv_preserve_binary e concat mul r) }, { exact EM1_pmap e⁻¹ᵉ* (equiv.inv_preserve_binary e concat mul r) },
rewrite [EMadd1_succ], rewrite [EMadd1_succ],
exact ptrunc.elim ((succ n).+1) exact ptrunc.elim ((succ n).+1)
(psusp.elim (f _ (EM_up e) (is_homomorphism_EM_up e r) _ _)), (susp_elim (f _ (EM_up e) (is_homomorphism_EM_up e r) _ _)),
end end
definition EMadd1_pmap_succ {G : AbGroup} {X : Type*} (n : ) (e : Ω[succ (succ n)] X ≃* G) definition EMadd1_pmap_succ {G : AbGroup} {X : Type*} (n : ) (e : Ω[succ (succ n)] X ≃* G)
r [H1 : is_conn (succ n) X] [H2 : is_trunc ((succ n).+1) X] : EMadd1_pmap (succ n) e r = r [H1 : is_conn (succ n) X] [H2 : is_trunc ((succ n).+1) X] : EMadd1_pmap (succ n) e r =
ptrunc.elim ((succ n).+1) (psusp.elim (EMadd1_pmap n (EM_up e) (is_homomorphism_EM_up e r))) := ptrunc.elim ((succ n).+1) (susp_elim (EMadd1_pmap n (EM_up e) (is_homomorphism_EM_up e r))) :=
by reflexivity by reflexivity
definition loop_EMadd1_pmap {G : AbGroup} {X : Type*} {n : } (e : Ω[succ (succ n)] X ≃* G) definition loop_EMadd1_pmap {G : AbGroup} {X : Type*} {n : } (e : Ω[succ (succ n)] X ≃* G)
@ -454,7 +454,7 @@ namespace EM
begin begin
induction n with n ψ, induction n with n ψ,
{ exact EM1_functor φ }, { exact EM1_functor φ },
{ apply ptrunc_functor, apply psusp_functor, exact ψ } { apply ptrunc_functor, apply susp_functor, exact ψ }
end end
definition EM_functor [unfold 4] {G H : AbGroup} (φ : G →g H) (n : ) : definition EM_functor [unfold 4] {G H : AbGroup} (φ : G →g H) (n : ) :

View file

@ -5,7 +5,7 @@ Authors: Ulrik Buchholtz
-/ -/
import types.trunc homotopy.sphere hit.pushout import types.trunc homotopy.sphere hit.pushout
open eq is_trunc is_equiv nat equiv trunc prod pushout sigma sphere_index unit open eq is_trunc is_equiv nat equiv trunc prod pushout sigma unit pointed
-- where should this be? -- where should this be?
definition family : Type := ΣX, X → Type definition family : Type := ΣX, X → Type

View file

@ -10,7 +10,7 @@ import .sphere
import types.int.hott import types.int.hott
import algebra.homotopy_group .connectedness import algebra.homotopy_group .connectedness
open eq susp bool sphere_index is_equiv equiv is_trunc is_conn pi algebra pointed open eq susp bool is_equiv equiv is_trunc is_conn pi algebra pointed
definition circle : Type₀ := sphere 1 definition circle : Type₀ := sphere 1
@ -18,8 +18,8 @@ namespace circle
notation `S¹` := circle notation `S¹` := circle
definition base1 : S¹ := !north definition base1 : S¹ := !north
definition base2 : S¹ := !south definition base2 : S¹ := !south
definition seg1 : base1 = base2 := merid !north definition seg1 : base1 = base2 := merid ff
definition seg2 : base1 = base2 := merid !south definition seg2 : base1 = base2 := merid tt
definition base : S¹ := base1 definition base : S¹ := base1
definition loop : base = base := seg2 ⬝ seg1⁻¹ definition loop : base = base := seg2 ⬝ seg1⁻¹
@ -28,12 +28,11 @@ namespace circle
(Ps1 : Pb1 =[seg1] Pb2) (Ps2 : Pb1 =[seg2] Pb2) (x : S¹) : P x := (Ps1 : Pb1 =[seg1] Pb2) (Ps2 : Pb1 =[seg2] Pb2) (x : S¹) : P x :=
begin begin
induction x with b, induction x with b,
{ exact Pb1}, { exact Pb1 },
{ exact Pb2}, { exact Pb2 },
{ esimp at *, induction b with y, { esimp at *, induction b with y,
{ exact Ps1}, { exact Ps1 },
{ exact Ps2}, { exact Ps2 }},
{ cases y}},
end end
definition rec2_on [reducible] {P : S¹ → Type} (x : S¹) (Pb1 : P base1) (Pb2 : P base2) definition rec2_on [reducible] {P : S¹ → Type} (x : S¹) (Pb1 : P base1) (Pb2 : P base2)
@ -335,7 +334,7 @@ namespace circle
end end
proposition is_conn_circle [instance] : is_conn 0 S¹ := proposition is_conn_circle [instance] : is_conn 0 S¹ :=
sphere.is_conn_sphere -1.+2 sphere.is_conn_sphere 1
definition is_conn_pcircle [instance] : is_conn 0 S¹* := !is_conn_circle definition is_conn_pcircle [instance] : is_conn 0 S¹* := !is_conn_circle
definition is_trunc_pcircle [instance] : is_trunc 1 S¹* := !is_trunc_circle definition is_trunc_pcircle [instance] : is_trunc 1 S¹* := !is_trunc_circle

View file

@ -92,7 +92,7 @@ namespace cofiber
{ exact !con_inv_cancel_left⁻¹ ⬝ idp ◾ (!ap_inv⁻¹ ◾ idp) } { exact !con_inv_cancel_left⁻¹ ⬝ idp ◾ (!ap_inv⁻¹ ◾ idp) }
end end
definition pcofiber_punit (A : Type*) : pcofiber (pconst A punit) ≃* psusp A := definition pcofiber_punit (A : Type*) : pcofiber (pconst A punit) ≃* susp A :=
begin begin
fapply pequiv_of_pmap, fapply pequiv_of_pmap,
{ fconstructor, intro x, induction x, exact north, exact south, exact merid x, { fconstructor, intro x, induction x, exact north, exact south, exact merid x,

View file

@ -10,6 +10,7 @@ The H-space structure on S¹ and the complex Hopf fibration
import .hopf .circle types.fin import .hopf .circle types.fin
open eq equiv is_equiv circle is_conn trunc is_trunc sphere susp pointed fiber sphere.ops function open eq equiv is_equiv circle is_conn trunc is_trunc sphere susp pointed fiber sphere.ops function
join
namespace hopf namespace hopf
@ -25,29 +26,27 @@ namespace hopf
{ exact natural_square { exact natural_square
(λa : S¹, ap (λb : S¹, b * z) (circle_mul_base a)) (λa : S¹, ap (λb : S¹, b * z) (circle_mul_base a))
loop }, loop },
{ apply is_prop.elimo, apply is_trunc_square } } { apply is_prop.elimo, apply is_trunc_square }}
end end
open sphere_index definition complex_hopf' : S 3 → S 2 :=
definition complex_hopf : S 3 → S 2 :=
begin begin
intro x, apply @sigma.pr1 (susp S¹) (hopf S¹), intro x, apply @sigma.pr1 (susp S¹) (hopf S¹),
apply inv (hopf.total S¹), apply inv (join.spheres 1 1), exact x apply inv (hopf.total S¹), exact (join_sphere 1 1)⁻¹ᵉ x
end end
definition complex_phopf [constructor] : S* 3 →* S* 2 := definition complex_hopf [constructor] : S 3 →* S 2 :=
proof pmap.mk complex_hopf idp qed proof pmap.mk complex_hopf' idp qed
definition pfiber_complex_phopf : pfiber complex_phopf ≃* S* 1 := definition pfiber_complex_hopf : pfiber complex_hopf ≃* S 1 :=
begin begin
fapply pequiv_of_equiv, fapply pequiv_of_equiv,
{ esimp, unfold [complex_hopf], { esimp, unfold [complex_hopf'],
refine fiber.equiv_precompose (sigma.pr1 ∘ (hopf.total S¹)⁻¹ᵉ) refine fiber.equiv_precompose (sigma.pr1 ∘ (hopf.total S¹)⁻¹ᵉ)
(join.spheres (of_nat 1) (of_nat 1))⁻¹ᵉ _ ⬝e _, (join_sphere 1 1)⁻¹ᵉ _ ⬝e _,
refine fiber.equiv_precompose _ (hopf.total S¹)⁻¹ᵉ _ ⬝e _, refine fiber.equiv_precompose _ (hopf.total S¹)⁻¹ᵉ _ ⬝e _,
apply fiber_pr1}, apply fiber_pr1 },
{ reflexivity} { reflexivity }
end end
end hopf end hopf

View file

@ -269,6 +269,9 @@ namespace is_conn
definition is_conn_minus_one (A : Type) (a : ∥ A ∥) : is_conn -1 A := definition is_conn_minus_one (A : Type) (a : ∥ A ∥) : is_conn -1 A :=
is_contr.mk a (is_prop.elim _) is_contr.mk a (is_prop.elim _)
definition is_conn_minus_one_pointed [instance] (A : Type*) : is_conn -1 A :=
is_conn_minus_one A (tr pt)
definition is_conn_trunc [instance] (A : Type) (n k : ℕ₋₂) [H : is_conn n A] definition is_conn_trunc [instance] (A : Type) (n k : ℕ₋₂) [H : is_conn n A]
: is_conn n (trunc k A) := : is_conn n (trunc k A) :=
begin begin

View file

@ -17,12 +17,12 @@ namespace freudenthal section
/- /-
This proof is ported from Agda This proof is ported from Agda
This is the 95% version of the Freudenthal Suspension Theorem, which means that we don't This is the 95% version of the Freudenthal Suspension Theorem, which means that we don't
prove that loop_psusp_unit : A →* Ω(psusp A) is 2n-connected (if A is n-connected), prove that loop_susp_unit : A →* Ω(susp A) is 2n-connected (if A is n-connected),
but instead we only prove that it induces an equivalence on the first 2n homotopy groups. but instead we only prove that it induces an equivalence on the first 2n homotopy groups.
-/ -/
private definition up (a : A) : north = north :> susp A := private definition up (a : A) : north = north :> susp A :=
loop_psusp_unit A a loop_susp_unit A a
definition code_merid : A → ptrunc (n + n) A → ptrunc (n + n) A := definition code_merid : A → ptrunc (n + n) A → ptrunc (n + n) A :=
begin begin
@ -127,7 +127,7 @@ namespace freudenthal section
theorem decode_coh (a : A) : decode_north =[merid a] decode_south := theorem decode_coh (a : A) : decode_north =[merid a] decode_south :=
begin begin
apply arrow_pathover_left, intro c, esimp at *, apply arrow_pathover_left, intro c,
induction c with a', induction c with a',
rewrite [↑code, elim_type_merid], rewrite [↑code, elim_type_merid],
refine @wedge_extension.ext _ _ n n _ _ (λ a a', tr (up a') =[merid a] decode_south refine @wedge_extension.ext _ _ n n _ _ (λ a a', tr (up a') =[merid a] decode_south
@ -155,38 +155,38 @@ namespace freudenthal section
end end
parameters (A n) parameters (A n)
definition equiv' : trunc (n + n) A ≃ trunc (n + n) (Ω (psusp A)) := definition equiv' : trunc (n + n) A ≃ trunc (n + n) (Ω (susp A)) :=
equiv.MK decode_north encode decode_encode encode_decode_north equiv.MK decode_north encode decode_encode encode_decode_north
definition pequiv' : ptrunc (n + n) A ≃* ptrunc (n + n) (Ω (psusp A)) := definition pequiv' : ptrunc (n + n) A ≃* ptrunc (n + n) (Ω (susp A)) :=
pequiv_of_equiv equiv' decode_north_pt pequiv_of_equiv equiv' decode_north_pt
-- We don't prove this: -- We don't prove this:
-- theorem freudenthal_suspension : is_conn_fun (n+n) (loop_psusp_unit A) := sorry -- theorem freudenthal_suspension : is_conn_fun (n+n) (loop_susp_unit A) := sorry
end end freudenthal end end freudenthal
open algebra group open algebra group
definition freudenthal_pequiv (A : Type*) {n k : } [is_conn n A] (H : k ≤ 2 * n) definition freudenthal_pequiv (A : Type*) {n k : } [is_conn n A] (H : k ≤ 2 * n)
: ptrunc k A ≃* ptrunc k (Ω (psusp A)) := : ptrunc k A ≃* ptrunc k (Ω (susp A)) :=
have H' : k ≤[ℕ₋₂] n + n, have H' : k ≤[ℕ₋₂] n + n,
by rewrite [mul.comm at H, -algebra.zero_add n at {1}]; exact of_nat_le_of_nat H, by rewrite [mul.comm at H, -algebra.zero_add n at {1}]; exact of_nat_le_of_nat H,
ptrunc_pequiv_ptrunc_of_le H' (freudenthal.pequiv' A n) ptrunc_pequiv_ptrunc_of_le H' (freudenthal.pequiv' A n)
definition freudenthal_equiv {A : Type*} {n k : } [is_conn n A] (H : k ≤ 2 * n) definition freudenthal_equiv {A : Type*} {n k : } [is_conn n A] (H : k ≤ 2 * n)
: trunc k A ≃ trunc k (Ω (psusp A)) := : trunc k A ≃ trunc k (Ω (susp A)) :=
freudenthal_pequiv A H freudenthal_pequiv A H
definition freudenthal_homotopy_group_pequiv (A : Type*) {n k : } [is_conn n A] (H : k ≤ 2 * n) definition freudenthal_homotopy_group_pequiv (A : Type*) {n k : } [is_conn n A] (H : k ≤ 2 * n)
: π[k + 1] (psusp A) ≃* π[k] A := : π[k + 1] (susp A) ≃* π[k] A :=
calc calc
π[k + 1] (psusp A) ≃* π[k] (Ω (psusp A)) : homotopy_group_succ_in (psusp A) k π[k + 1] (susp A) ≃* π[k] (Ω (susp A)) : homotopy_group_succ_in (susp A) k
... ≃* Ω[k] (ptrunc k (Ω (psusp A))) : homotopy_group_pequiv_loop_ptrunc k (Ω (psusp A)) ... ≃* Ω[k] (ptrunc k (Ω (susp A))) : homotopy_group_pequiv_loop_ptrunc k (Ω (susp A))
... ≃* Ω[k] (ptrunc k A) : loopn_pequiv_loopn k (freudenthal_pequiv A H) ... ≃* Ω[k] (ptrunc k A) : loopn_pequiv_loopn k (freudenthal_pequiv A H)
... ≃* π[k] A : (homotopy_group_pequiv_loop_ptrunc k A)⁻¹ᵉ* ... ≃* π[k] A : (homotopy_group_pequiv_loop_ptrunc k A)⁻¹ᵉ*
definition freudenthal_homotopy_group_isomorphism (A : Type*) {n k : } [is_conn n A] definition freudenthal_homotopy_group_isomorphism (A : Type*) {n k : } [is_conn n A]
(H : k + 1 ≤ 2 * n) : πg[k+2] (psusp A) ≃g πg[k + 1] A := (H : k + 1 ≤ 2 * n) : πg[k+2] (susp A) ≃g πg[k + 1] A :=
begin begin
fapply isomorphism_of_equiv, fapply isomorphism_of_equiv,
{ exact equiv_of_pequiv (freudenthal_homotopy_group_pequiv A H)}, { exact equiv_of_pequiv (freudenthal_homotopy_group_pequiv A H)},
@ -199,7 +199,7 @@ begin
end end
definition to_pmap_freudenthal_pequiv {A : Type*} (n k : ) [is_conn n A] (H : k ≤ 2 * n) definition to_pmap_freudenthal_pequiv {A : Type*} (n k : ) [is_conn n A] (H : k ≤ 2 * n)
: freudenthal_pequiv A H ~* ptrunc_functor k (loop_psusp_unit A) := : freudenthal_pequiv A H ~* ptrunc_functor k (loop_susp_unit A) :=
begin begin
fapply phomotopy.mk, fapply phomotopy.mk,
{ intro x, induction x with a, reflexivity }, { intro x, induction x with a, reflexivity },
@ -208,24 +208,24 @@ end
definition ptrunc_elim_freudenthal_pequiv {A B : Type*} (n k : ) [is_conn n A] (H : k ≤ 2 * n) definition ptrunc_elim_freudenthal_pequiv {A B : Type*} (n k : ) [is_conn n A] (H : k ≤ 2 * n)
(f : A →* Ω B) [is_trunc (k.+1) (B)] : (f : A →* Ω B) [is_trunc (k.+1) (B)] :
ptrunc.elim k (Ω→ (psusp.elim f)) ∘* freudenthal_pequiv A H ~* ptrunc.elim k f := ptrunc.elim k (Ω→ (susp_elim f)) ∘* freudenthal_pequiv A H ~* ptrunc.elim k f :=
begin begin
refine pwhisker_left _ !to_pmap_freudenthal_pequiv ⬝* _, refine pwhisker_left _ !to_pmap_freudenthal_pequiv ⬝* _,
refine !ptrunc_elim_ptrunc_functor ⬝* _, refine !ptrunc_elim_ptrunc_functor ⬝* _,
exact ptrunc_elim_phomotopy k !ap1_psusp_elim, exact ptrunc_elim_phomotopy k !ap1_susp_elim,
end end
namespace susp namespace susp
definition iterate_psusp_stability_pequiv (A : Type*) {k n : } [is_conn 0 A] definition iterate_susp_stability_pequiv_of_is_conn_0 (A : Type*) {k n : } [is_conn 0 A]
(H : k ≤ 2 * n) : π[k + 1] (iterate_psusp (n + 1) A) ≃* π[k] (iterate_psusp n A) := (H : k ≤ 2 * n) : π[k + 1] (iterate_susp (n + 1) A) ≃* π[k] (iterate_susp n A) :=
have is_conn n (iterate_psusp n A), by rewrite [-zero_add n]; exact _, have is_conn n (iterate_susp n A), by rewrite [-zero_add n]; exact _,
freudenthal_homotopy_group_pequiv (iterate_psusp n A) H freudenthal_homotopy_group_pequiv (iterate_susp n A) H
definition iterate_psusp_stability_isomorphism (A : Type*) {k n : } [is_conn 0 A] definition iterate_susp_stability_isomorphism_of_is_conn_0 (A : Type*) {k n : } [is_conn 0 A]
(H : k + 1 ≤ 2 * n) : πg[k+2] (iterate_psusp (n + 1) A) ≃g πg[k+1] (iterate_psusp n A) := (H : k + 1 ≤ 2 * n) : πg[k+2] (iterate_susp (n + 1) A) ≃g πg[k+1] (iterate_susp n A) :=
have is_conn n (iterate_psusp n A), by rewrite [-zero_add n]; exact _, have is_conn n (iterate_susp n A), by rewrite [-zero_add n]; exact _,
freudenthal_homotopy_group_isomorphism (iterate_psusp n A) H freudenthal_homotopy_group_isomorphism (iterate_susp n A) H
definition stability_helper1 {k n : } (H : k + 2 ≤ 2 * n) : k ≤ 2 * pred n := definition stability_helper1 {k n : } (H : k + 2 ≤ 2 * n) : k ≤ 2 * pred n :=
begin begin
@ -233,49 +233,43 @@ namespace susp
apply pred_le_pred, apply pred_le_pred, exact H apply pred_le_pred, apply pred_le_pred, exact H
end end
definition stability_helper2 (A : Type) {k n : } (H : k + 2 ≤ 2 * n) : definition stability_helper2 (A : Type*) {k n : } (H : k + 2 ≤ 2 * n) :
is_conn (pred n) (iterate_susp (n + 1) A) := is_conn (pred n) (iterate_susp n A) :=
have Π(n : ), n = -2 + (succ n + 1), have Π(n : ), n = -1 + (n + 1),
begin intro n, induction n with n IH, reflexivity, exact ap succ IH end, begin intro n, induction n with n IH, reflexivity, exact ap succ IH end,
begin begin
cases n with n, cases n with n,
{ exfalso, exact not_succ_le_zero _ H}, { exfalso, exact not_succ_le_zero _ H },
{ esimp, rewrite [this n], apply is_conn_iterate_susp} { esimp, rewrite [this n], exact is_conn_iterate_susp -1 _ A }
end end
definition iterate_susp_stability_pequiv (A : Type) {k n : } definition iterate_susp_stability_pequiv (A : Type*) {k n : }
(H : k + 2 ≤ 2 * n) : π[k + 1] (pointed.MK (iterate_susp (n + 2) A) !north) ≃* (H : k + 2 ≤ 2 * n) : π[k + 1] (iterate_susp (n + 1) A) ≃* π[k] (iterate_susp n A) :=
π[k ] (pointed.MK (iterate_susp (n + 1) A) !north) := have is_conn (pred n) (iterate_susp n A), from stability_helper2 A H,
have is_conn (pred n) (carrier (pointed.MK (iterate_susp (n + 1) A) !north)), from freudenthal_homotopy_group_pequiv (iterate_susp n A) (stability_helper1 H)
stability_helper2 A H,
freudenthal_homotopy_group_pequiv (pointed.MK (iterate_susp (n + 1) A) !north)
(stability_helper1 H)
definition iterate_susp_stability_isomorphism (A : Type) {k n : } definition iterate_susp_stability_isomorphism (A : Type*) {k n : }
(H : k + 3 ≤ 2 * n) : πg[k+1 +1] (pointed.MK (iterate_susp (n + 2) A) !north) ≃g (H : k + 3 ≤ 2 * n) : πg[k+2] (iterate_susp (n + 1) A) ≃g πg[k+1] (iterate_susp n A) :=
πg[k+1] (pointed.MK (iterate_susp (n + 1) A) !north) := have is_conn (pred n) (iterate_susp n A), from @stability_helper2 A (k+1) n H,
have is_conn (pred n) (carrier (pointed.MK (iterate_susp (n + 1) A) !north)), from freudenthal_homotopy_group_isomorphism (iterate_susp n A) (stability_helper1 H)
@stability_helper2 A (k+1) n H,
freudenthal_homotopy_group_isomorphism (pointed.MK (iterate_susp (n + 1) A) !north)
(stability_helper1 H)
definition iterated_freudenthal_pequiv (A : Type*) {n k m : } [HA : is_conn n A] (H : k ≤ 2 * n) definition iterated_freudenthal_pequiv (A : Type*) {n k m : } [HA : is_conn n A] (H : k ≤ 2 * n)
: ptrunc k A ≃* ptrunc k (Ω[m] (iterate_psusp m A)) := : ptrunc k A ≃* ptrunc k (Ω[m] (iterate_susp m A)) :=
begin begin
revert A n k HA H, induction m with m IH: intro A n k HA H, revert A n k HA H, induction m with m IH: intro A n k HA H,
{ reflexivity}, { reflexivity },
{ have H2 : succ k ≤ 2 * succ n, { have H2 : succ k ≤ 2 * succ n,
from calc from calc
succ k ≤ succ (2 * n) : succ_le_succ H succ k ≤ succ (2 * n) : succ_le_succ H
... ≤ 2 * succ n : self_le_succ, ... ≤ 2 * succ n : self_le_succ,
exact calc exact calc
ptrunc k A ≃* ptrunc k (Ω (psusp A)) : freudenthal_pequiv A H ptrunc k A ≃* ptrunc k (Ω (susp A)) : freudenthal_pequiv A H
... ≃* Ω (ptrunc (succ k) (psusp A)) : loop_ptrunc_pequiv ... ≃* Ω (ptrunc (succ k) (susp A)) : loop_ptrunc_pequiv
... ≃* Ω (ptrunc (succ k) (Ω[m] (iterate_psusp m (psusp A)))) : ... ≃* Ω (ptrunc (succ k) (Ω[m] (iterate_susp m (susp A)))) :
loop_pequiv_loop (IH (psusp A) (succ n) (succ k) _ H2) loop_pequiv_loop (IH (susp A) (succ n) (succ k) _ H2)
... ≃* ptrunc k (Ω[succ m] (iterate_psusp m (psusp A))) : loop_ptrunc_pequiv ... ≃* ptrunc k (Ω[succ m] (iterate_susp m (susp A))) : loop_ptrunc_pequiv
... ≃* ptrunc k (Ω[succ m] (iterate_psusp (succ m) A)) : ... ≃* ptrunc k (Ω[succ m] (iterate_susp (succ m) A)) :
ptrunc_pequiv_ptrunc _ (loopn_pequiv_loopn _ !iterate_psusp_succ_in)} ptrunc_pequiv_ptrunc _ (loopn_pequiv_loopn _ !iterate_susp_succ_in)}
end end
end susp end susp

View file

@ -38,16 +38,14 @@ namespace is_trunc
end end
-- Corollary 8.3.3 -- Corollary 8.3.3
section open sphere sphere.ops
open sphere sphere.ops sphere_index theorem homotopy_group_sphere_le (n k : ) (H : k < n) : is_contr (π[k] (S n)) :=
theorem homotopy_group_sphere_le (n k : ) (H : k < n) : is_contr (π[k] (S* n)) :=
begin begin
cases n with n, cases n with n,
{ exfalso, apply not_lt_zero, exact H}, { exfalso, apply not_lt_zero, exact H},
{ have H2 : k ≤ n, from le_of_lt_succ H, { have H2 : k ≤ n, from le_of_lt_succ H,
apply @(trivial_homotopy_group_of_is_conn _ H2) } apply @(trivial_homotopy_group_of_is_conn _ H2) }
end end
end
theorem is_contr_HG_fiber_of_is_connected {A B : Type*} (k n : ) (f : A →* B) theorem is_contr_HG_fiber_of_is_connected {A B : Type*} (k n : ) (f : A →* B)
[H : is_conn_fun n f] (H2 : k ≤ n) : is_contr (π[k] (pfiber f)) := [H : is_conn_fun n f] (H2 : k ≤ n) : is_contr (π[k] (pfiber f)) :=

View file

@ -8,7 +8,7 @@ H-spaces and the Hopf construction
import types.equiv .wedge .join import types.equiv .wedge .join
open eq eq.ops equiv is_equiv is_conn is_trunc trunc susp join open eq eq.ops equiv is_equiv is_conn is_trunc trunc susp join pointed
namespace hopf namespace hopf
@ -186,15 +186,15 @@ section
(equiv.MK decode' encode decode_encode encode_decode')⁻¹ᵉ (equiv.MK decode' encode decode_encode encode_decode')⁻¹ᵉ
definition main_lemma_point definition main_lemma_point
: ptrunc 1 (Ω(psusp A)) ≃* pointed.MK A 1 := : ptrunc 1 (Ω(susp A)) ≃* pointed.MK A 1 :=
pointed.pequiv_of_equiv main_lemma idp pointed.pequiv_of_equiv main_lemma idp
protected definition delooping : Ω (ptrunc 2 (psusp A)) ≃* pointed.MK A 1 := protected definition delooping : Ω (ptrunc 2 (susp A)) ≃* pointed.MK A 1 :=
loop_ptrunc_pequiv 1 (psusp A) ⬝e* main_lemma_point loop_ptrunc_pequiv 1 (susp A) ⬝e* main_lemma_point
/- characterization of the underlying pointed maps -/ /- characterization of the underlying pointed maps -/
definition to_pmap_main_lemma_point_pinv definition to_pmap_main_lemma_point_pinv
: main_lemma_point⁻¹ᵉ* ~* !ptr ∘* loop_psusp_unit (pointed.MK A 1) := : main_lemma_point⁻¹ᵉ* ~* !ptr ∘* loop_susp_unit (pointed.MK A 1) :=
begin begin
fapply phomotopy.mk, fapply phomotopy.mk,
{ intro a, reflexivity }, { intro a, reflexivity },
@ -202,7 +202,7 @@ section
end end
definition to_pmap_delooping_pinv : definition to_pmap_delooping_pinv :
delooping⁻¹ᵉ* ~* Ω→ !ptr ∘* loop_psusp_unit (pointed.MK A 1) := delooping⁻¹ᵉ* ~* Ω→ !ptr ∘* loop_susp_unit (pointed.MK A 1) :=
begin begin
refine !trans_pinv ⬝* _, refine !trans_pinv ⬝* _,
refine pwhisker_left _ !to_pmap_main_lemma_point_pinv ⬝* _, refine pwhisker_left _ !to_pmap_main_lemma_point_pinv ⬝* _,
@ -211,12 +211,12 @@ section
end end
definition hopf_delooping_elim {B : Type*} (f : pointed.MK A 1 →* Ω B) [H2 : is_trunc 2 B] : definition hopf_delooping_elim {B : Type*} (f : pointed.MK A 1 →* Ω B) [H2 : is_trunc 2 B] :
Ω→(ptrunc.elim 2 (psusp.elim f)) ∘* (hopf.delooping A coh)⁻¹ᵉ* ~* f := Ω→(ptrunc.elim 2 (susp_elim f)) ∘* (hopf.delooping A coh)⁻¹ᵉ* ~* f :=
begin begin
refine pwhisker_left _ !to_pmap_delooping_pinv ⬝* _, refine pwhisker_left _ !to_pmap_delooping_pinv ⬝* _,
refine !passoc⁻¹* ⬝* _, refine !passoc⁻¹* ⬝* _,
refine pwhisker_right _ (!ap1_pcompose⁻¹* ⬝* ap1_phomotopy !ptrunc_elim_ptr) ⬝* _, refine pwhisker_right _ (!ap1_pcompose⁻¹* ⬝* ap1_phomotopy !ptrunc_elim_ptr) ⬝* _,
apply ap1_psusp_elim apply ap1_susp_elim
end end
end end

View file

@ -8,7 +8,7 @@ Cayley-Dickson construction via imaginaroids
import algebra.group cubical.square types.pi .hopf import algebra.group cubical.square types.pi .hopf
open eq eq.ops equiv susp hopf open eq eq.ops equiv susp hopf pointed
open [notation] sum open [notation] sum
namespace imaginaroid namespace imaginaroid

View file

@ -7,7 +7,7 @@ Declaration of the interval
-/ -/
import .susp types.eq types.prod cubical.square import .susp types.eq types.prod cubical.square
open eq susp unit equiv is_trunc nat prod open eq susp unit equiv is_trunc nat prod pointed
definition interval : Type₀ := susp unit definition interval : Type₀ := susp unit

View file

@ -57,11 +57,11 @@ namespace join
protected definition hsquare {a a' : A} {b b' : B} (p : a = a') (q : b = b') : protected definition hsquare {a a' : A} {b b' : B} (p : a = a') (q : b = b') :
square (ap inl p) (ap inr q) (glue a b) (glue a' b') := square (ap inl p) (ap inr q) (glue a b) (glue a' b') :=
eq.rec_on p (eq.rec_on q hrfl) by induction p; induction q; exact hrfl
protected definition vsquare {a a' : A} {b b' : B} (p : a = a') (q : b = b') : protected definition vsquare {a a' : A} {b b' : B} (p : a = a') (q : b = b') :
square (glue a b) (glue a' b') (ap inl p) (ap inr q) := square (glue a b) (glue a' b') (ap inl p) (ap inr q) :=
eq.rec_on p (eq.rec_on q vrfl) by induction p; induction q; exact vrfl
end end
@ -120,7 +120,7 @@ end join
namespace join namespace join
variables {A₁ A₂ B₁ B₂ : Type} variables {A₁ A₂ B₁ B₂ : Type}
protected definition functor [reducible] definition join_functor [reducible]
(f : A₁ → A₂) (g : B₁ → B₂) : join A₁ B₁ → join A₂ B₂ := (f : A₁ → A₂) (g : B₁ → B₂) : join A₁ B₁ → join A₂ B₂ :=
begin begin
intro x, induction x with a b a b, intro x, induction x with a b a b,
@ -132,12 +132,12 @@ namespace join
: join.diamond a a' b b' → join.diamond (f a) (f a') (g b) (g b') := : join.diamond a a' b b' → join.diamond (f a) (f a') (g b) (g b') :=
begin begin
unfold join.diamond, intro s, unfold join.diamond, intro s,
note s' := aps (join.functor f g) s, note s' := aps (join_functor f g) s,
do 2 rewrite eq.ap_inv at s', do 2 rewrite eq.ap_inv at s',
do 4 rewrite join.elim_glue at s', exact s' do 4 rewrite join.elim_glue at s', exact s'
end end
protected definition equiv_closed definition join_equiv_join
: A₁ ≃ A₂ → B₁ ≃ B₂ → join A₁ B₁ ≃ join A₂ B₂ := : A₁ ≃ A₂ → B₁ ≃ B₂ → join A₁ B₁ ≃ join A₂ B₂ :=
begin begin
intros H K, intros H K,
@ -170,7 +170,7 @@ namespace join
cases p, apply pathover_idp_of_eq, apply join.symm_diamond cases p, apply pathover_idp_of_eq, apply join.symm_diamond
end end
protected definition empty (A : Type) : join empty A ≃ A := definition join_empty (A : Type) : join empty A ≃ A :=
begin begin
fapply equiv.MK, fapply equiv.MK,
{ intro x, induction x with z a z a, { intro x, induction x with z a z a,
@ -185,7 +185,7 @@ namespace join
{ induction z } } { induction z } }
end end
protected definition bool (A : Type) : join bool A ≃ susp A := definition join_bool (A : Type) : join bool A ≃ susp A :=
begin begin
fapply equiv.MK, fapply equiv.MK,
{ intro ba, induction ba with [b, a, b, a], { intro ba, induction ba with [b, a, b, a],
@ -229,7 +229,7 @@ end join
namespace join namespace join
variables (A B C : Type) variables (A B C : Type)
protected definition is_contr [HA : is_contr A] : definition is_contr_join [HA : is_contr A] :
is_contr (join A B) := is_contr (join A B) :=
begin begin
fapply is_contr.mk, exact inl (center A), fapply is_contr.mk, exact inl (center A),
@ -239,24 +239,24 @@ namespace join
generalize center_eq a, intro p, cases p, apply idp_con, generalize center_eq a, intro p, cases p, apply idp_con,
end end
protected definition swap : join A B → join B A := definition join_swap : join A B → join B A :=
begin begin
intro x, induction x with a b a b, exact inr a, exact inl b, intro x, induction x with a b a b, exact inr a, exact inl b,
apply !glue⁻¹ apply !glue⁻¹
end end
protected definition swap_involutive (x : join A B) : definition join_swap_involutive (x : join A B) :
join.swap B A (join.swap A B x) = x := join_swap B A (join_swap A B x) = x :=
begin begin
induction x with a b a b, do 2 reflexivity, induction x with a b a b, do 2 reflexivity,
apply eq_pathover, rewrite ap_id, apply eq_pathover, rewrite ap_id,
apply hdeg_square, esimp[join.swap], apply hdeg_square,
apply concat, apply ap_compose' (join.elim _ _ _), apply concat, apply ap_compose' (join.elim _ _ _),
krewrite [join.elim_glue, ap_inv, join.elim_glue], apply inv_inv, krewrite [join.elim_glue, ap_inv, join.elim_glue], apply inv_inv,
end end
protected definition symm : join A B ≃ join B A := definition join_symm : join A B ≃ join B A :=
by fapply equiv.MK; do 2 apply join.swap; do 2 apply join.swap_involutive by fapply equiv.MK; do 2 apply join_swap; do 2 apply join_swap_involutive
end join end join
@ -482,49 +482,49 @@ section join_switch
end join_switch end join_switch
protected definition switch_equiv (A B C : Type) : join (join A B) C ≃ join (join C B) A := definition join_switch_equiv (A B C : Type) : join (join A B) C ≃ join (join C B) A :=
by apply equiv.MK; do 2 apply join.switch_involutive by apply equiv.MK; do 2 apply join.switch_involutive
protected definition assoc (A B C : Type) : join (join A B) C ≃ join A (join B C) := definition join_assoc (A B C : Type) : join (join A B) C ≃ join A (join B C) :=
calc join (join A B) C ≃ join (join C B) A : join.switch_equiv calc join (join A B) C ≃ join (join C B) A : join_switch_equiv
... ≃ join A (join C B) : join.symm ... ≃ join A (join C B) : join_symm
... ≃ join A (join B C) : join.equiv_closed erfl (join.symm C B) ... ≃ join A (join B C) : join_equiv_join erfl (join_symm C B)
protected definition ap_assoc_inv_glue_inl {A B : Type} (C : Type) (a : A) (b : B) definition ap_join_assoc_inv_glue_inl {A B : Type} (C : Type) (a : A) (b : B)
: ap (to_inv (join.assoc A B C)) (glue a (inl b)) = ap inl (glue a b) := : ap (to_inv (join_assoc A B C)) (glue a (inl b)) = ap inl (glue a b) :=
begin begin
unfold join.assoc, rewrite ap_compose, krewrite join.elim_glue, unfold join_assoc, rewrite ap_compose, krewrite join.elim_glue,
rewrite ap_compose, krewrite join.elim_glue, rewrite ap_inv, krewrite join.elim_glue, rewrite ap_compose, krewrite join.elim_glue, rewrite ap_inv, krewrite join.elim_glue,
unfold switch_coh, unfold join.symm, unfold join.swap, esimp, rewrite eq.inv_inv unfold switch_coh, unfold join_symm, unfold join_swap, esimp, rewrite inv_inv
end end
protected definition ap_assoc_inv_glue_inr {A C : Type} (B : Type) (a : A) (c : C) protected definition ap_assoc_inv_glue_inr {A C : Type} (B : Type) (a : A) (c : C)
: ap (to_inv (join.assoc A B C)) (glue a (inr c)) = glue (inl a) c := : ap (to_inv (join_assoc A B C)) (glue a (inr c)) = glue (inl a) c :=
begin begin
unfold join.assoc, rewrite ap_compose, krewrite join.elim_glue, unfold join_assoc, rewrite ap_compose, krewrite join.elim_glue,
rewrite ap_compose, krewrite join.elim_glue, rewrite ap_inv, krewrite join.elim_glue, rewrite ap_compose, krewrite join.elim_glue, rewrite ap_inv, krewrite join.elim_glue,
unfold switch_coh, unfold join.symm, unfold join.swap, esimp, rewrite eq.inv_inv unfold switch_coh, unfold join_symm, unfold join_swap, esimp, rewrite inv_inv
end end
end join end join
namespace join namespace join
open sphere sphere_index sphere.ops open sphere sphere.ops
protected definition spheres (n m : ℕ₋₁) : join (S n) (S m) ≃ S (n+1+m) := definition join_sphere (n m : ) : join (S n) (S m) ≃ S (n+m+1) :=
begin begin
apply equiv.trans (join.symm (S n) (S m)), refine join_symm (S n) (S m) ⬝e _,
induction m with m IH, induction m with m IH,
{ exact join.empty (S n) }, { exact join_bool (S n) },
{ calc join (S m.+1) (S n) { calc join (S (m+1)) (S n)
≃ join (join bool (S m)) (S n) ≃ join (join bool (S m)) (S n)
: join.equiv_closed (equiv.symm (join.bool (S m))) erfl : join_equiv_join (join_bool (S m))⁻¹ᵉ erfl
... ≃ join bool (join (S m) (S n)) ... ≃ join bool (join (S m) (S n))
: join.assoc : join_assoc
... ≃ join bool (S (n+1+m)) ... ≃ join bool (S (n+m+1))
: join.equiv_closed erfl IH : join_equiv_join erfl IH
... ≃ sphere (n+1+m.+1) ... ≃ sphere (n+m+2)
: join.bool (S (n+1+m)) } : join_bool (S (n+m+1)) }
end end
end join end join

View file

@ -9,19 +9,18 @@ The H-space structure on S³ and the quaternionic Hopf fibration
import .complex_hopf .imaginaroid import .complex_hopf .imaginaroid
open eq equiv is_equiv circle is_conn trunc is_trunc sphere_index sphere susp open eq equiv is_equiv circle is_conn trunc is_trunc sphere susp imaginaroid pointed bool join
open imaginaroid
namespace hopf namespace hopf
definition involutive_neg_empty [instance] : involutive_neg empty := definition involutive_neg_bool [instance] : involutive_neg bool :=
⦃ involutive_neg, neg := empty.elim, neg_neg := by intro a; induction a ⦃ involutive_neg, neg := bnot, neg_neg := by intro a; induction a: reflexivity
definition involutive_neg_circle [instance] : involutive_neg circle := definition involutive_neg_circle [instance] : involutive_neg circle :=
by change involutive_neg (susp (susp empty)); exact _ by change involutive_neg (susp bool); exact _
definition has_star_circle [instance] : has_star circle := definition has_star_circle [instance] : has_star circle :=
by change has_star (susp (susp empty)); exact _ by change has_star (susp bool); exact _
-- this is the "natural" conjugation defined using the base-loop recursor -- this is the "natural" conjugation defined using the base-loop recursor
definition circle_star [reducible] : S¹ → S¹ := definition circle_star [reducible] : S¹ → S¹ :=
@ -52,7 +51,7 @@ namespace hopf
(ap (λw, w ⬝ (tr_constant seg1 base)⁻¹) (con.right_inv seg2)⁻¹), (ap (λw, w ⬝ (tr_constant seg1 base)⁻¹) (con.right_inv seg2)⁻¹),
apply con.assoc }, apply con.assoc },
{ apply eq_pathover, krewrite elim_merid, rewrite elim_seg2, { apply eq_pathover, krewrite elim_merid, rewrite elim_seg2,
apply square_of_eq, rewrite [↑loop,con_inv,inv_inv,idp_con], apply square_of_eq, rewrite [↑circle.loop,con_inv,inv_inv,idp_con],
apply con.assoc } apply con.assoc }
end end
@ -85,10 +84,11 @@ namespace hopf
{ apply is_prop.elimo } } { apply is_prop.elimo } }
end end
open sphere.ops
definition imaginaroid_sphere_zero [instance] definition imaginaroid_sphere_zero [instance]
: imaginaroid (sphere (-1.+1)) := : imaginaroid (S 0) :=
⦃ imaginaroid, ⦃ imaginaroid, involutive_neg_bool,
neg_neg := susp_neg_neg,
mul := circle_mul, mul := circle_mul,
one_mul := circle_base_mul, one_mul := circle_base_mul,
mul_one := circle_mul_base, mul_one := circle_mul_base,
@ -96,12 +96,9 @@ namespace hopf
norm := circle_norm, norm := circle_norm,
star_mul := circle_star_mul ⦄ star_mul := circle_star_mul ⦄
local attribute sphere [reducible]
open sphere.ops
definition sphere_three_h_space [instance] : h_space (S 3) := definition sphere_three_h_space [instance] : h_space (S 3) :=
@h_space_equiv_closed (join S¹ S¹) @h_space_equiv_closed (join S¹ S¹)
(cd_h_space (S -1.+1) circle_assoc) (S 3) (join.spheres 1 1) (cd_h_space (S 0) circle_assoc) (S 3) (join_sphere 1 1)
definition is_conn_sphere_three : is_conn 0 (S 3) := definition is_conn_sphere_three : is_conn 0 (S 3) :=
begin begin
@ -115,10 +112,13 @@ namespace hopf
local attribute is_conn_sphere_three [instance] local attribute is_conn_sphere_three [instance]
definition quaternionic_hopf : S 7 → S 4 := definition quaternionic_hopf' : S 7 → S 4 :=
begin begin
intro x, apply @sigma.pr1 (susp (S 3)) (hopf (S 3)), intro x, apply @sigma.pr1 (susp (S 3)) (hopf (S 3)),
apply inv (hopf.total (S 3)), apply inv (join.spheres 3 3), exact x apply inv (hopf.total (S 3)), apply inv (join_sphere 3 3), exact x
end end
definition quaternionic_hopf [constructor] : S 7 →* S 4 :=
pmap.mk quaternionic_hopf' idp
end hopf end hopf

View file

@ -8,7 +8,7 @@ Declaration of the n-spheres
import .susp types.trunc import .susp types.trunc
open eq nat susp bool is_trunc unit pointed algebra open eq nat susp bool is_trunc unit pointed algebra equiv
/- /-
We can define spheres with the following possible indices: We can define spheres with the following possible indices:
@ -16,310 +16,49 @@ open eq nat susp bool is_trunc unit pointed algebra
- nat (forgetting that S^-1 = empty) - nat (forgetting that S^-1 = empty)
- nat, but counting wrong (S^0 = empty, S^1 = bool, ...) - nat, but counting wrong (S^0 = empty, S^1 = bool, ...)
- some new type "integers >= -1" - some new type "integers >= -1"
We choose the last option here. We choose the second option here.
-/ -/
/- Sphere levels -/ definition sphere (n : ) : Type* := iterate_susp n pbool
inductive sphere_index : Type₀ :=
| minus_one : sphere_index
| succ : sphere_index → sphere_index
notation `ℕ₋₁` := sphere_index
namespace trunc_index
definition sub_one [reducible] (n : ℕ₋₁) : ℕ₋₂ :=
sphere_index.rec_on n -2 (λ n k, k.+1)
postfix `..-1`:(max+1) := sub_one
definition of_sphere_index [reducible] (n : ℕ₋₁) : ℕ₋₂ :=
n..-1.+1
-- we use a double dot to distinguish with the notation .-1 in trunc_index (of type → ℕ₋₂)
end trunc_index
namespace sphere_index
/-
notation for sphere_index is -1, 0, 1, ...
from 0 and up this comes from a coercion from num to sphere_index (via nat)
-/
postfix `.+1`:(max+1) := sphere_index.succ
postfix `.+2`:(max+1) := λ(n : sphere_index), (n .+1 .+1)
notation `-1` := minus_one
definition has_zero_sphere_index [instance] : has_zero ℕ₋₁ :=
has_zero.mk (succ minus_one)
definition has_one_sphere_index [instance] : has_one ℕ₋₁ :=
has_one.mk (succ (succ minus_one))
definition add_plus_one (n m : ℕ₋₁) : ℕ₋₁ :=
sphere_index.rec_on m n (λ k l, l .+1)
-- addition of sphere_indices, where (-1 + -1) is defined to be -1.
protected definition add (n m : ℕ₋₁) : ℕ₋₁ :=
sphere_index.cases_on m
(sphere_index.cases_on n -1 id)
(sphere_index.rec n (λn' r, succ r))
inductive le (a : ℕ₋₁) : ℕ₋₁ → Type :=
| sp_refl : le a a
| step : Π {b}, le a b → le a (b.+1)
infix ` +1+ `:65 := sphere_index.add_plus_one
definition has_add_sphere_index [instance] [priority 2000] [reducible] : has_add ℕ₋₁ :=
has_add.mk sphere_index.add
definition has_le_sphere_index [instance] : has_le ℕ₋₁ :=
has_le.mk sphere_index.le
definition sub_one [reducible] (n : ) : ℕ₋₁ :=
nat.rec_on n -1 (λ n k, k.+1)
postfix `..-1`:(max+1) := sub_one
definition of_nat [coercion] [reducible] (n : ) : ℕ₋₁ :=
n..-1.+1
-- we use a double dot to distinguish with the notation .-1 in trunc_index (of type → ℕ₋₂)
definition add_one [reducible] (n : ℕ₋₁) : :=
sphere_index.rec_on n 0 (λ n k, nat.succ k)
definition add_plus_one_of_nat (n m : ) : (n +1+ m) = sphere_index.of_nat (n + m + 1) :=
begin
induction m with m IH,
{ reflexivity },
{ exact ap succ IH}
end
definition succ_sub_one (n : ) : (nat.succ n)..-1 = n :> ℕ₋₁ :=
idp
definition add_sub_one (n m : ) : (n + m)..-1 = n..-1 +1+ m..-1 :> ℕ₋₁ :=
begin
induction m with m IH,
{ reflexivity },
{ exact ap succ IH }
end
definition succ_le_succ {n m : ℕ₋₁} (H : n ≤ m) : n.+1 ≤[ℕ₋₁] m.+1 :=
by induction H with m H IH; apply le.sp_refl; exact le.step IH
definition minus_one_le (n : ℕ₋₁) : -1 ≤[ℕ₋₁] n :=
by induction n with n IH; apply le.sp_refl; exact le.step IH
open decidable
protected definition has_decidable_eq [instance] : Π(n m : ℕ₋₁), decidable (n = m)
| has_decidable_eq -1 -1 := inl rfl
| has_decidable_eq (n.+1) -1 := inr (by contradiction)
| has_decidable_eq -1 (m.+1) := inr (by contradiction)
| has_decidable_eq (n.+1) (m.+1) :=
match has_decidable_eq n m with
| inl xeqy := inl (by rewrite xeqy)
| inr xney := inr (λ h : succ n = succ m, by injection h with xeqy; exact absurd xeqy xney)
end
definition not_succ_le_minus_two {n : sphere_index} (H : n .+1 ≤[ℕ₋₁] -1) : empty :=
by cases H
protected definition le_trans {n m k : ℕ₋₁} (H1 : n ≤[ℕ₋₁] m) (H2 : m ≤[ℕ₋₁] k) : n ≤[ℕ₋₁] k :=
begin
induction H2 with k H2 IH,
{ exact H1},
{ exact le.step IH}
end
definition le_of_succ_le_succ {n m : ℕ₋₁} (H : n.+1 ≤[ℕ₋₁] m.+1) : n ≤[ℕ₋₁] m :=
begin
cases H with m H',
{ apply le.sp_refl},
{ exact sphere_index.le_trans (le.step !le.sp_refl) H'}
end
theorem not_succ_le_self {n : ℕ₋₁} : ¬n.+1 ≤[ℕ₋₁] n :=
begin
induction n with n IH: intro H,
{ exact not_succ_le_minus_two H},
{ exact IH (le_of_succ_le_succ H)}
end
protected definition le_antisymm {n m : ℕ₋₁} (H1 : n ≤[ℕ₋₁] m) (H2 : m ≤[ℕ₋₁] n) : n = m :=
begin
induction H2 with n H2 IH,
{ reflexivity},
{ exfalso, apply @not_succ_le_self n, exact sphere_index.le_trans H1 H2}
end
protected definition le_succ {n m : ℕ₋₁} (H1 : n ≤[ℕ₋₁] m): n ≤[ℕ₋₁] m.+1 :=
le.step H1
definition add_plus_one_minus_one (n : ℕ₋₁) : n +1+ -1 = n := idp
definition add_plus_one_succ (n m : ℕ₋₁) : n +1+ (m.+1) = (n +1+ m).+1 := idp
definition minus_one_add_plus_one (n : ℕ₋₁) : -1 +1+ n = n :=
begin induction n with n IH, reflexivity, exact ap succ IH end
definition succ_add_plus_one (n m : ℕ₋₁) : (n.+1) +1+ m = (n +1+ m).+1 :=
begin induction m with m IH, reflexivity, exact ap succ IH end
definition sphere_index_of_nat_add_one (n : ℕ₋₁) : sphere_index.of_nat (add_one n) = n.+1 :=
begin induction n with n IH, reflexivity, exact ap succ IH end
definition add_one_succ (n : ℕ₋₁) : add_one (n.+1) = succ (add_one n) :=
by reflexivity
definition add_one_sub_one (n : ) : add_one (n..-1) = n :=
begin induction n with n IH, reflexivity, exact ap nat.succ IH end
definition add_one_of_nat (n : ) : add_one n = nat.succ n :=
ap nat.succ (add_one_sub_one n)
definition sphere_index.of_nat_succ (n : )
: sphere_index.of_nat (nat.succ n) = (sphere_index.of_nat n).+1 :=
begin induction n with n IH, reflexivity, exact ap succ IH end
/-
warning: if this coercion is available, the coercion → ℕ₋₂ is the composition of the coercions
→ ℕ₋₁ → ℕ₋₂. We don't want this composition as coercion, because it has worse computational
properties. You can rewrite it with trans_to_of_sphere_index_eq defined below.
-/
attribute trunc_index.of_sphere_index [coercion]
end sphere_index open sphere_index
definition weak_order_sphere_index [trans_instance] [reducible] : weak_order sphere_index :=
weak_order.mk le sphere_index.le.sp_refl @sphere_index.le_trans @sphere_index.le_antisymm
namespace trunc_index
definition sub_two_eq_sub_one_sub_one (n : ) : n.-2 = n..-1..-1 :=
begin
induction n with n IH,
{ reflexivity},
{ exact ap trunc_index.succ IH}
end
definition of_nat_sub_one (n : )
: (sphere_index.of_nat n)..-1 = (trunc_index.sub_two n).+1 :=
begin
induction n with n IH,
{ reflexivity},
{ exact ap trunc_index.succ IH}
end
definition sub_one_of_sphere_index (n : )
: of_sphere_index n..-1 = (trunc_index.sub_two n).+1 :=
begin
induction n with n IH,
{ reflexivity},
{ exact ap trunc_index.succ IH}
end
definition succ_sub_one (n : ℕ₋₁) : n.+1..-1 = n :> ℕ₋₂ :=
idp
definition of_sphere_index_of_nat (n : )
: of_sphere_index (sphere_index.of_nat n) = of_nat n :> ℕ₋₂ :=
begin
induction n with n IH,
{ reflexivity},
{ exact ap trunc_index.succ IH}
end
definition trans_to_of_sphere_index_eq (n : )
: trunc_index._trans_to_of_sphere_index n = of_nat n :> ℕ₋₂ :=
of_sphere_index_of_nat n
definition trunc_index_of_nat_add_one (n : ℕ₋₁)
: trunc_index.of_nat (add_one n) = (of_sphere_index n).+1 :=
begin induction n with n IH, reflexivity, exact ap succ IH end
definition of_sphere_index_succ (n : ℕ₋₁) : of_sphere_index (n.+1) = (of_sphere_index n).+1 :=
begin induction n with n IH, reflexivity, exact ap succ IH end
end trunc_index
open sphere_index equiv
definition sphere (n : ℕ₋₁) : Type₀ := iterate_susp (add_one n) empty
namespace sphere namespace sphere
export [notation] sphere_index
definition base {n : } : sphere n := north
definition pointed_sphere [instance] [constructor] (n : ) : pointed (sphere n) :=
pointed.mk base
definition psphere [constructor] (n : ) : Type* := pointed.mk' (sphere n)
namespace ops namespace ops
abbreviation S := sphere abbreviation S := sphere
notation `S*` := psphere
end ops end ops
open sphere.ops open sphere.ops
definition sphere_minus_one : S -1 = empty := idp definition sphere_succ [unfold_full] (n : ) : S (n+1) = susp (S n) := idp
definition sphere_succ [unfold_full] (n : ℕ₋₁) : S n.+1 = susp (S n) := idp definition sphere_eq_iterate_susp (n : ) : S n = iterate_susp n pbool := idp
definition psphere_succ [unfold_full] (n : ) : S* (n + 1) = psusp (S* n) := idp
definition psphere_eq_iterate_susp (n : )
: S* n = pointed.MK (iterate_susp (succ n) empty) !north :=
begin
esimp,
apply ap (λx, pointed.MK (susp x) (@north x)); apply ap (λx, iterate_susp x empty),
apply add_one_sub_one
end
definition equator [constructor] (n : ) : S* n →* Ω (S* (succ n)) := definition equator [constructor] (n : ) : S n →* Ω (S (succ n)) :=
loop_psusp_unit (S* n) loop_susp_unit (S n)
definition surf {n : } : Ω[n] (S* n) := definition surf {n : } : Ω[n] (S n) :=
begin begin
induction n with n s, induction n with n s,
{ exact south }, { exact tt },
{ exact (loopn_succ_in (S* (succ n)) n)⁻¹ᵉ* (apn n (equator n) s) } { exact (loopn_succ_in (S (succ n)) n)⁻¹ᵉ* (apn n (equator n) s) }
end end
definition bool_of_sphere [unfold 1] : S 0 → bool := definition sphere_equiv_bool [constructor] : S 0 ≃ bool := by reflexivity
proof susp.rec ff tt (λx, empty.elim x) qed
definition sphere_of_bool [unfold 1] : bool → S 0 definition sphere_pequiv_pbool [constructor] : S 0 ≃* pbool := by reflexivity
| ff := proof north qed
| tt := proof south qed
definition sphere_equiv_bool [constructor] : S 0 ≃ bool := definition sphere_pequiv_iterate_susp (n : ) : sphere n ≃* iterate_susp n pbool :=
equiv.MK bool_of_sphere by reflexivity
sphere_of_bool
(λb, match b with | tt := idp | ff := idp end)
(λx, proof susp.rec_on x idp idp (empty.rec _) qed)
definition psphere_pequiv_pbool [constructor] : S* 0 ≃* pbool := definition sphere_pmap_pequiv' (A : Type*) (n : ) : ppmap (S n) A ≃* Ω[n] A :=
pequiv_of_equiv sphere_equiv_bool idp
definition sphere_eq_bool : S 0 = bool :=
ua sphere_equiv_bool
definition sphere_eq_pbool : S* 0 = pbool :=
pType_eq sphere_equiv_bool idp
definition psphere_pequiv_iterate_psusp (n : ) : psphere n ≃* iterate_psusp n pbool :=
begin
induction n with n e,
{ exact psphere_pequiv_pbool },
{ exact psusp_pequiv e }
end
definition psphere_pmap_pequiv' (A : Type*) (n : ) : ppmap (S* n) A ≃* Ω[n] A :=
begin begin
revert A, induction n with n IH: intro A, revert A, induction n with n IH: intro A,
{ refine _ ⬝e* !ppmap_pbool_pequiv, exact pequiv_ppcompose_right psphere_pequiv_pbool⁻¹ᵉ* }, { refine !ppmap_pbool_pequiv },
{ refine psusp_adjoint_loop (S* n) A ⬝e* IH (Ω A) ⬝e* !loopn_succ_in⁻¹ᵉ* } { refine susp_adjoint_loop (S n) A ⬝e* IH (Ω A) ⬝e* !loopn_succ_in⁻¹ᵉ* }
end end
definition psphere_pmap_pequiv (A : Type*) (n : ) : ppmap (S* n) A ≃* Ω[n] A := definition sphere_pmap_pequiv (A : Type*) (n : ) : ppmap (S n) A ≃* Ω[n] A :=
begin begin
fapply pequiv_change_fun, fapply pequiv_change_fun,
{ exact psphere_pmap_pequiv' A n }, { exact sphere_pmap_pequiv' A n },
{ exact papn_fun A surf }, { exact papn_fun A surf },
{ revert A, induction n with n IH: intro A, { revert A, induction n with n IH: intro A,
{ reflexivity }, { reflexivity },
@ -327,33 +66,29 @@ namespace sphere
exact !loopn_succ_in_inv_natural⁻¹* _ }} exact !loopn_succ_in_inv_natural⁻¹* _ }}
end end
protected definition elim {n : } {P : Type*} (p : Ω[n] P) : S* n →* P := protected definition elim {n : } {P : Type*} (p : Ω[n] P) : S n →* P :=
!psphere_pmap_pequiv⁻¹ᵉ* p !sphere_pmap_pequiv⁻¹ᵉ* p
-- definition elim_surf {n : } {P : Type*} (p : Ω[n] P) : apn n (sphere.elim p) surf = p := -- definition elim_surf {n : } {P : Type*} (p : Ω[n] P) : apn n (sphere.elim p) surf = p :=
-- begin -- begin
-- induction n with n IH, -- induction n with n IH,
-- { esimp [apn,surf,sphere.elim,psphere_pmap_equiv], apply sorry}, -- { esimp [apn,surf,sphere.elim,sphere_pmap_equiv], apply sorry},
-- { apply sorry} -- { apply sorry}
-- end -- end
end sphere end sphere
namespace sphere namespace sphere
open is_conn trunc_index sphere_index sphere.ops open is_conn trunc_index sphere.ops
-- Corollary 8.2.2 -- Corollary 8.2.2
theorem is_conn_sphere [instance] (n : ₋₁) : is_conn (n..-1) (S n) := theorem is_conn_sphere [instance] (n : ) : is_conn (n.-1) (S n) :=
begin begin
induction n with n IH, induction n with n IH,
{ apply is_conn_minus_two }, { apply is_conn_minus_one_pointed },
{ rewrite [trunc_index.succ_sub_one n, sphere.sphere_succ], { apply is_conn_susp, exact IH }
apply is_conn_susp }
end end
theorem is_conn_psphere [instance] (n : ) : is_conn (n.-1) (S* n) :=
transport (λx, is_conn x (sphere n)) (of_nat_sub_one n) (is_conn_sphere n)
end sphere end sphere
open sphere sphere.ops open sphere sphere.ops
@ -361,12 +96,12 @@ open sphere sphere.ops
namespace is_trunc namespace is_trunc
open trunc_index open trunc_index
variables {n : } {A : Type} variables {n : } {A : Type}
definition is_trunc_of_psphere_pmap_equiv_constant definition is_trunc_of_sphere_pmap_equiv_constant
(H : Π(a : A) (f : S* n →* pointed.Mk a) (x : S n), f x = f base) : is_trunc (n.-2.+1) A := (H : Π(a : A) (f : S n →* pointed.Mk a) (x : S n), f x = f pt) : is_trunc (n.-2.+1) A :=
begin begin
apply iff.elim_right !is_trunc_iff_is_contr_loop, apply iff.elim_right !is_trunc_iff_is_contr_loop,
intro a, intro a,
apply is_trunc_equiv_closed, exact !psphere_pmap_pequiv, apply is_trunc_equiv_closed, exact !sphere_pmap_pequiv,
fapply is_contr.mk, fapply is_contr.mk,
{ exact pmap.mk (λx, a) idp}, { exact pmap.mk (λx, a) idp},
{ intro f, fapply pmap_eq, { intro f, fapply pmap_eq,
@ -375,30 +110,30 @@ namespace is_trunc
end end
definition is_trunc_iff_map_sphere_constant definition is_trunc_iff_map_sphere_constant
(H : Π(f : S n → A) (x : S n), f x = f base) : is_trunc (n.-2.+1) A := (H : Π(f : S n → A) (x : S n), f x = f pt) : is_trunc (n.-2.+1) A :=
begin begin
apply is_trunc_of_psphere_pmap_equiv_constant, apply is_trunc_of_sphere_pmap_equiv_constant,
intros, cases f with f p, esimp at *, apply H intros, cases f with f p, esimp at *, apply H
end end
definition psphere_pmap_equiv_constant_of_is_trunc' [H : is_trunc (n.-2.+1) A] definition sphere_pmap_equiv_constant_of_is_trunc' [H : is_trunc (n.-2.+1) A]
(a : A) (f : S* n →* pointed.Mk a) (x : S n) : f x = f base := (a : A) (f : S n →* pointed.Mk a) (x : S n) : f x = f pt :=
begin begin
let H' := iff.elim_left (is_trunc_iff_is_contr_loop n A) H a, let H' := iff.elim_left (is_trunc_iff_is_contr_loop n A) H a,
note H'' := @is_trunc_equiv_closed_rev _ _ _ !psphere_pmap_pequiv H', note H'' := @is_trunc_equiv_closed_rev _ _ _ !sphere_pmap_pequiv H',
esimp at H'', esimp at H'',
have p : f = pmap.mk (λx, f base) (respect_pt f), have p : f = pmap.mk (λx, f pt) (respect_pt f),
by apply is_prop.elim, by apply is_prop.elim,
exact ap10 (ap pmap.to_fun p) x exact ap10 (ap pmap.to_fun p) x
end end
definition psphere_pmap_equiv_constant_of_is_trunc [H : is_trunc (n.-2.+1) A] definition sphere_pmap_equiv_constant_of_is_trunc [H : is_trunc (n.-2.+1) A]
(a : A) (f : S* n →* pointed.Mk a) (x y : S n) : f x = f y := (a : A) (f : S n →* pointed.Mk a) (x y : S n) : f x = f y :=
let H := psphere_pmap_equiv_constant_of_is_trunc' a f in !H ⬝ !H⁻¹ let H := sphere_pmap_equiv_constant_of_is_trunc' a f in !H ⬝ !H⁻¹
definition map_sphere_constant_of_is_trunc [H : is_trunc (n.-2.+1) A] definition map_sphere_constant_of_is_trunc [H : is_trunc (n.-2.+1) A]
(f : S n → A) (x y : S n) : f x = f y := (f : S n → A) (x y : S n) : f x = f y :=
psphere_pmap_equiv_constant_of_is_trunc (f base) (pmap.mk f idp) x y sphere_pmap_equiv_constant_of_is_trunc (f pt) (pmap.mk f idp) x y
definition map_sphere_constant_of_is_trunc_self [H : is_trunc (n.-2.+1) A] definition map_sphere_constant_of_is_trunc_self [H : is_trunc (n.-2.+1) A]
(f : S n → A) (x : S n) : map_sphere_constant_of_is_trunc f x x = idp := (f : S n → A) (x : S n) : map_sphere_constant_of_is_trunc f x x = idp :=

View file

@ -14,93 +14,76 @@ In this file we calculate
import .homotopy_group .freudenthal import .homotopy_group .freudenthal
open eq group algebra is_equiv equiv fin prod chain_complex pointed fiber nat is_trunc trunc_index open eq group algebra is_equiv equiv fin prod chain_complex pointed fiber nat is_trunc trunc_index
sphere.ops trunc is_conn susp sphere.ops trunc is_conn susp bool
namespace sphere namespace sphere
/- Corollaries of the complex hopf fibration combined with the LES of homotopy groups -/ /- Corollaries of the complex hopf fibration combined with the LES of homotopy groups -/
open sphere sphere.ops int circle hopf open sphere sphere.ops int circle hopf
definition π2S2 : πg[1+1] (S* 2) ≃g g := definition π2S2 : πg[1+1] (S 2) ≃g g :=
begin begin
refine _ ⬝g fundamental_group_of_circle, refine _ ⬝g fundamental_group_of_circle,
refine _ ⬝g homotopy_group_isomorphism_of_pequiv _ pfiber_complex_phopf, refine _ ⬝g homotopy_group_isomorphism_of_pequiv _ pfiber_complex_hopf,
fapply isomorphism_of_equiv, fapply isomorphism_of_equiv,
{ fapply equiv.mk, { fapply equiv.mk,
{ exact cc_to_fn (LES_of_homotopy_groups complex_phopf) (1, 2)}, { exact cc_to_fn (LES_of_homotopy_groups complex_hopf) (1, 2)},
{ refine LES_is_equiv_of_trivial complex_phopf 1 2 _ _, { refine LES_is_equiv_of_trivial complex_hopf 1 2 _ _,
{ have H : 1 ≤[] 2, from !one_le_succ, { have H : 1 ≤[] 2, from !one_le_succ,
apply trivial_homotopy_group_of_is_conn, exact H, rexact is_conn_psphere 3 }, apply trivial_homotopy_group_of_is_conn, exact H, rexact is_conn_sphere 3 },
{ refine tr_rev (λx, is_contr (ptrunctype._trans_of_to_pType x)) { refine tr_rev (λx, is_contr (ptrunctype._trans_of_to_pType x))
(LES_of_homotopy_groups_1 complex_phopf 2) _, (LES_of_homotopy_groups_1 complex_hopf 2) _,
apply trivial_homotopy_group_of_is_conn, apply le.refl, rexact is_conn_psphere 3 }}}, apply trivial_homotopy_group_of_is_conn, apply le.refl, rexact is_conn_sphere 3 }}},
{ exact homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun _ (0, 2))} { exact homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun _ (0, 2))}
end end
open circle open circle
definition πnS3_eq_πnS2 (n : ) : πg[n+2 +1] (S* 3) ≃g πg[n+2 +1] (S* 2) := definition πnS3_eq_πnS2 (n : ) : πg[n+2 +1] (S 3) ≃g πg[n+2 +1] (S 2) :=
begin begin
fapply isomorphism_of_equiv, fapply isomorphism_of_equiv,
{ fapply equiv.mk, { fapply equiv.mk,
{ exact cc_to_fn (LES_of_homotopy_groups complex_phopf) (n+3, 0)}, { exact cc_to_fn (LES_of_homotopy_groups complex_hopf) (n+3, 0)},
{ have H : is_trunc 1 (pfiber complex_phopf), { have H : is_trunc 1 (pfiber complex_hopf),
from @(is_trunc_equiv_closed_rev _ pfiber_complex_phopf) is_trunc_circle, from @(is_trunc_equiv_closed_rev _ pfiber_complex_hopf) is_trunc_circle,
refine LES_is_equiv_of_trivial complex_phopf (n+3) 0 _ _, refine LES_is_equiv_of_trivial complex_hopf (n+3) 0 _ _,
{ have H2 : 1 ≤[] n + 1, from !one_le_succ, { have H2 : 1 ≤[] n + 1, from !one_le_succ,
exact @trivial_ghomotopy_group_of_is_trunc _ _ _ H H2 }, exact @trivial_ghomotopy_group_of_is_trunc _ _ _ H H2 },
{ refine tr_rev (λx, is_contr (ptrunctype._trans_of_to_pType x)) { refine tr_rev (λx, is_contr (ptrunctype._trans_of_to_pType x))
(LES_of_homotopy_groups_2 complex_phopf _) _, (LES_of_homotopy_groups_2 complex_hopf _) _,
have H2 : 1 ≤[] n + 2, from !one_le_succ, have H2 : 1 ≤[] n + 2, from !one_le_succ,
apply trivial_ghomotopy_group_of_is_trunc _ _ _ H2 }}}, apply trivial_ghomotopy_group_of_is_trunc _ _ _ H2 }}},
{ exact homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun _ (n+2, 0))} { exact homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun _ (n+2, 0))}
end end
definition sphere_stability_pequiv (k n : ) (H : k + 2 ≤ 2 * n) : definition sphere_stability_pequiv (k n : ) (H : k + 2 ≤ 2 * n) :
π[k + 1] (S* (n+1)) ≃* π[k] (S* n) := π[k + 1] (S (n+1)) ≃* π[k] (S n) :=
begin rewrite [+ psphere_eq_iterate_susp], exact iterate_susp_stability_pequiv empty H end iterate_susp_stability_pequiv pbool H
definition stability_isomorphism (k n : ) (H : k + 3 ≤ 2 * n) definition stability_isomorphism (k n : ) (H : k + 3 ≤ 2 * n)
: πg[k+1 +1] (S* (n+1)) ≃g πg[k+1] (S* n) := : πg[k+1 +1] (S (n+1)) ≃g πg[k+1] (S n) :=
begin rewrite [+ psphere_eq_iterate_susp], exact iterate_susp_stability_isomorphism empty H end iterate_susp_stability_isomorphism pbool H
open int circle hopf open int circle hopf
definition πnSn (n : ) : πg[n+1] (S* (succ n)) ≃g g := definition πnSn (n : ) : πg[n+1] (S (n+1)) ≃g g :=
begin begin
cases n with n IH, cases n with n IH,
{ exact fundamental_group_of_circle}, { exact fundamental_group_of_circle },
{ induction n with n IH, { induction n with n IH,
{ exact π2S2}, { exact π2S2 },
{ refine _ ⬝g IH, apply stability_isomorphism, { refine _ ⬝g IH, apply stability_isomorphism,
rexact add_mul_le_mul_add n 1 2}} rexact add_mul_le_mul_add n 1 2 }}
end end
theorem not_is_trunc_sphere (n : ) : ¬is_trunc n (S* (succ n)) := theorem not_is_trunc_sphere (n : ) : ¬is_trunc n (S (n+1)) :=
begin begin
intro H, intro H,
note H2 := trivial_ghomotopy_group_of_is_trunc (S* (succ n)) n n !le.refl, note H2 := trivial_ghomotopy_group_of_is_trunc (S (n+1)) n n !le.refl,
have H3 : is_contr , from is_trunc_equiv_closed _ (equiv_of_isomorphism (πnSn n)), have H3 : is_contr , from is_trunc_equiv_closed _ (equiv_of_isomorphism (πnSn n)),
have H4 : (0 : ) ≠ (1 : ), from dec_star, have H4 : (0 : ) ≠ (1 : ), from dec_star,
apply H4, apply H4,
apply is_prop.elim, apply is_prop.elim,
end end
section definition π3S2 : πg[2+1] (S 2) ≃g g :=
open sphere_index
definition not_is_trunc_sphere' (n : ℕ₋₁) : ¬is_trunc n (S (n.+1)) :=
begin
cases n with n,
{ esimp [sphere.ops.S, sphere], intro H,
have H2 : is_prop bool, from @(is_trunc_equiv_closed -1 sphere_equiv_bool) H,
have H3 : bool.tt ≠ bool.ff, from dec_star, apply H3, apply is_prop.elim},
{ intro H, apply not_is_trunc_sphere (add_one n),
rewrite [▸*, trunc_index_of_nat_add_one, -add_one_succ,
sphere_index_of_nat_add_one],
exact H}
end
end
definition π3S2 : πg[2+1] (S* 2) ≃g g :=
(πnS3_eq_πnS2 0)⁻¹ᵍ ⬝g πnSn 2 (πnS3_eq_πnS2 0)⁻¹ᵍ ⬝g πnSn 2
end sphere end sphere

View file

@ -8,15 +8,31 @@ Declaration of suspension
import hit.pushout types.pointed2 cubical.square .connectedness import hit.pushout types.pointed2 cubical.square .connectedness
open pushout unit eq equiv open pushout unit eq equiv pointed
definition susp (A : Type) : Type := pushout (λ(a : A), star) (λ(a : A), star) definition susp' (A : Type) : Type := pushout (λ(a : A), star) (λ(a : A), star)
namespace susp
definition north' {A : Type} : susp' A :=
inl star
definition pointed_susp [instance] [constructor] (X : Type)
: pointed (susp' X) :=
pointed.mk north'
end susp open susp
definition susp [constructor] (X : Type) : Type* :=
pointed.MK (susp' X) north'
notation `⅀` := susp
namespace susp namespace susp
variable {A : Type} variable {A : Type}
definition north {A : Type} : susp A := definition north {A : Type} : susp A :=
inl star north'
definition south {A : Type} : susp A := definition south {A : Type} : susp A :=
inr star inr star
@ -25,7 +41,7 @@ namespace susp
glue a glue a
protected definition rec {P : susp A → Type} (PN : P north) (PS : P south) protected definition rec {P : susp A → Type} (PN : P north) (PS : P south)
(Pm : Π(a : A), PN =[merid a] PS) (x : susp A) : P x := (Pm : Π(a : A), PN =[merid a] PS) (x : susp' A) : P x :=
begin begin
induction x with u u, induction x with u u,
{ cases u, exact PN}, { cases u, exact PN},
@ -33,7 +49,7 @@ namespace susp
{ apply Pm}, { apply Pm},
end end
protected definition rec_on [reducible] {P : susp A → Type} (y : susp A) protected definition rec_on [reducible] {P : susp A → Type} (y : susp' A)
(PN : P north) (PS : P south) (Pm : Π(a : A), PN =[merid a] PS) : P y := (PN : P north) (PS : P south) (Pm : Π(a : A), PN =[merid a] PS) : P y :=
susp.rec PN PS Pm y susp.rec PN PS Pm y
@ -43,10 +59,10 @@ namespace susp
!rec_glue !rec_glue
protected definition elim {P : Type} (PN : P) (PS : P) (Pm : A → PN = PS) protected definition elim {P : Type} (PN : P) (PS : P) (Pm : A → PN = PS)
(x : susp A) : P := (x : susp' A) : P :=
susp.rec PN PS (λa, pathover_of_eq _ (Pm a)) x susp.rec PN PS (λa, pathover_of_eq _ (Pm a)) x
protected definition elim_on [reducible] {P : Type} (x : susp A) protected definition elim_on [reducible] {P : Type} (x : susp' A)
(PN : P) (PS : P) (Pm : A → PN = PS) : P := (PN : P) (PS : P) (Pm : A → PN = PS) : P :=
susp.elim PN PS Pm x susp.elim PN PS Pm x
@ -58,10 +74,10 @@ namespace susp
end end
protected definition elim_type (PN : Type) (PS : Type) (Pm : A → PN ≃ PS) protected definition elim_type (PN : Type) (PS : Type) (Pm : A → PN ≃ PS)
(x : susp A) : Type := (x : susp' A) : Type :=
pushout.elim_type (λx, PN) (λx, PS) Pm x pushout.elim_type (λx, PN) (λx, PS) Pm x
protected definition elim_type_on [reducible] (x : susp A) protected definition elim_type_on [reducible] (x : susp' A)
(PN : Type) (PS : Type) (Pm : A → PN ≃ PS) : Type := (PN : Type) (PS : Type) (Pm : A → PN ≃ PS) : Type :=
susp.elim_type PN PS Pm x susp.elim_type PN PS Pm x
@ -79,7 +95,7 @@ namespace susp
end susp end susp
attribute susp.north susp.south [constructor] attribute susp.north' susp.north susp.south [constructor]
attribute susp.rec susp.elim [unfold 6] [recursor 6] attribute susp.rec susp.elim [unfold 6] [recursor 6]
attribute susp.elim_type [unfold 5] attribute susp.elim_type [unfold 5]
attribute susp.rec_on susp.elim_on [unfold 3] attribute susp.rec_on susp.elim_on [unfold 3]
@ -94,28 +110,23 @@ namespace susp
[H : is_conn n A] : is_conn (n .+1) (susp A) := [H : is_conn n A] : is_conn (n .+1) (susp A) :=
is_contr.mk (tr north) is_contr.mk (tr north)
begin begin
apply trunc.rec, intro x, induction x with x, induction x,
fapply susp.rec,
{ reflexivity }, { reflexivity },
{ exact (trunc.rec (λa, ap tr (merid a)) (center (trunc n A))) }, { exact (trunc.rec (λa, ap tr (merid a)) (center (trunc n A))) },
{ intro a, { generalize (center (trunc n A)),
generalize (center (trunc n A)), intro x, induction x with a',
apply trunc.rec,
intro a',
apply pathover_of_tr_eq, apply pathover_of_tr_eq,
rewrite [eq_transport_Fr,idp_con], rewrite [eq_transport_Fr,idp_con],
revert H, induction n with [n, IH], revert H, induction n with n IH: intro H,
{ intro H, apply is_prop.elim }, { apply is_prop.elim },
{ intros H, { change ap (@tr n .+2 (susp A)) (merid a) = ap tr (merid a'),
change ap (@tr n .+2 (susp A)) (merid a) = ap tr (merid a'),
generalize a', generalize a',
apply is_conn_fun.elim n apply is_conn_fun.elim n
(is_conn_fun_from_unit n A a) (is_conn_fun_from_unit n A a)
(λx : A, trunctype.mk' n (ap (@tr n .+2 (susp A)) (merid a) = ap tr (merid x))), (λx : A, trunctype.mk' n (ap (@tr n .+2 (susp A)) (merid a) = ap tr (merid x))),
intros, intros,
change ap (@tr n .+2 (susp A)) (merid a) = ap tr (merid a), change ap (@tr n .+2 (susp A)) (merid a) = ap tr (merid a),
reflexivity reflexivity }
}
} }
end end
@ -152,7 +163,7 @@ namespace susp
variables {A B : Type} (f : A → B) variables {A B : Type} (f : A → B)
include f include f
protected definition functor [unfold 4] : susp A → susp B := definition susp_functor' [unfold 4] : susp A → susp B :=
begin begin
intro x, induction x with a, intro x, induction x with a,
{ exact north }, { exact north },
@ -164,19 +175,19 @@ namespace susp
include Hf include Hf
open is_equiv open is_equiv
protected definition is_equiv_functor [instance] [constructor] : is_equiv (susp.functor f) := protected definition is_equiv_functor [instance] [constructor] : is_equiv (susp_functor' f) :=
adjointify (susp.functor f) (susp.functor f⁻¹) adjointify (susp_functor' f) (susp_functor' f⁻¹)
abstract begin abstract begin
intro sb, induction sb with b, do 2 reflexivity, intro sb, induction sb with b, do 2 reflexivity,
apply eq_pathover, apply eq_pathover,
rewrite [ap_id,ap_compose' (susp.functor f) (susp.functor f⁻¹)], rewrite [ap_id,ap_compose' (susp_functor' f) (susp_functor' f⁻¹)],
krewrite [susp.elim_merid,susp.elim_merid], apply transpose, krewrite [susp.elim_merid,susp.elim_merid], apply transpose,
apply susp.merid_square (right_inv f b) apply susp.merid_square (right_inv f b)
end end end end
abstract begin abstract begin
intro sa, induction sa with a, do 2 reflexivity, intro sa, induction sa with a, do 2 reflexivity,
apply eq_pathover, apply eq_pathover,
rewrite [ap_id,ap_compose' (susp.functor f⁻¹) (susp.functor f)], rewrite [ap_id,ap_compose' (susp_functor' f⁻¹) (susp_functor' f)],
krewrite [susp.elim_merid,susp.elim_merid], apply transpose, krewrite [susp.elim_merid,susp.elim_merid], apply transpose,
apply susp.merid_square (left_inv f a) apply susp.merid_square (left_inv f a)
end end end end
@ -188,59 +199,42 @@ namespace susp
variables {A B : Type} (f : A ≃ B) variables {A B : Type} (f : A ≃ B)
protected definition equiv : susp A ≃ susp B := protected definition equiv : susp A ≃ susp B :=
equiv.mk (susp.functor f) _ equiv.mk (susp_functor' f) _
end susp end susp
namespace susp
open pointed
definition pointed_susp [instance] [constructor] (X : Type)
: pointed (susp X) :=
pointed.mk north
end susp
open susp
definition psusp [constructor] (X : Type) : Type* :=
pointed.mk' (susp X)
notation `⅀` := psusp
namespace susp namespace susp
open pointed is_trunc open pointed is_trunc
variables {X Y Z : Type*} variables {X Y Z : Type*}
definition is_conn_psusp [instance] (n : trunc_index) (A : Type*) definition susp_functor [constructor] (f : X →* Y) : susp X →* susp Y :=
[H : is_conn n A] : is_conn (n .+1) (psusp A) :=
is_conn_susp n A
definition psusp_functor [constructor] (f : X →* Y) : psusp X →* psusp Y :=
begin begin
fconstructor, fconstructor,
{ exact susp.functor f }, { exact susp_functor' f },
{ reflexivity } { reflexivity }
end end
definition is_equiv_psusp_functor [constructor] (f : X →* Y) [Hf : is_equiv f] definition is_equiv_susp_functor [constructor] (f : X →* Y) [Hf : is_equiv f]
: is_equiv (psusp_functor f) := : is_equiv (susp_functor f) :=
susp.is_equiv_functor f susp.is_equiv_functor f
definition psusp_pequiv [constructor] (f : X ≃* Y) : psusp X ≃* psusp Y := definition susp_pequiv [constructor] (f : X ≃* Y) : susp X ≃* susp Y :=
pequiv_of_equiv (susp.equiv f) idp pequiv_of_equiv (susp.equiv f) idp
definition psusp_functor_pcompose (g : Y →* Z) (f : X →* Y) : definition susp_functor_pcompose (g : Y →* Z) (f : X →* Y) :
psusp_functor (g ∘* f) ~* psusp_functor g ∘* psusp_functor f := susp_functor (g ∘* f) ~* susp_functor g ∘* susp_functor f :=
begin begin
fapply phomotopy.mk, fapply phomotopy.mk,
{ intro x, induction x, { intro x, induction x,
{ reflexivity }, { reflexivity },
{ reflexivity }, { reflexivity },
{ apply eq_pathover, apply hdeg_square, esimp, { apply eq_pathover, apply hdeg_square,
refine !elim_merid ⬝ _ ⬝ (ap_compose (psusp_functor g) _ _)⁻¹ᵖ, refine !elim_merid ⬝ _ ⬝ (ap_compose (susp_functor g) _ _)⁻¹ᵖ,
refine _ ⬝ ap02 _ !elim_merid⁻¹, exact !elim_merid⁻¹ }}, refine _ ⬝ ap02 _ !elim_merid⁻¹, exact !elim_merid⁻¹ }},
{ reflexivity }, { reflexivity },
end end
definition psusp_functor_phomotopy {f g : X →* Y} (p : f ~* g) : definition susp_functor_phomotopy {f g : X →* Y} (p : f ~* g) :
psusp_functor f ~* psusp_functor g := susp_functor f ~* susp_functor g :=
begin begin
fapply phomotopy.mk, fapply phomotopy.mk,
{ intro x, induction x, { intro x, induction x,
@ -251,7 +245,7 @@ namespace susp
{ reflexivity }, { reflexivity },
end end
definition psusp_functor_pid (A : Type*) : psusp_functor (pid A) ~* pid (psusp A) := definition susp_functor_pid (A : Type*) : susp_functor (pid A) ~* pid (susp A) :=
begin begin
fapply phomotopy.mk, fapply phomotopy.mk,
{ intro x, induction x, { intro x, induction x,
@ -264,15 +258,15 @@ namespace susp
/- adjunction originally ported from Coq-HoTT, /- adjunction originally ported from Coq-HoTT,
but we proved some additional naturality conditions -/ but we proved some additional naturality conditions -/
definition loop_psusp_unit [constructor] (X : Type*) : X →* Ω(psusp X) := definition loop_susp_unit [constructor] (X : Type*) : X →* Ω(susp X) :=
begin begin
fconstructor, fconstructor,
{ intro x, exact merid x ⬝ (merid pt)⁻¹ }, { intro x, exact merid x ⬝ (merid pt)⁻¹ },
{ apply con.right_inv }, { apply con.right_inv },
end end
definition loop_psusp_unit_natural (f : X →* Y) definition loop_susp_unit_natural (f : X →* Y)
: loop_psusp_unit Y ∘* f ~* Ω→ (psusp_functor f) ∘* loop_psusp_unit X := : loop_susp_unit Y ∘* f ~* Ω→ (susp_functor f) ∘* loop_susp_unit X :=
begin begin
induction X with X x, induction Y with Y y, induction f with f pf, esimp at *, induction pf, induction X with X x, induction Y with Y y, induction f with f pf, esimp at *, induction pf,
fapply phomotopy.mk, fapply phomotopy.mk,
@ -292,15 +286,15 @@ namespace susp
rewrite [-ap_compose (concat idp)] }, rewrite [-ap_compose (concat idp)] },
end end
definition loop_psusp_counit [constructor] (X : Type*) : psusp (Ω X) →* X := definition loop_susp_counit [constructor] (X : Type*) : susp (Ω X) →* X :=
begin begin
fconstructor, fconstructor,
{ intro x, induction x, exact pt, exact pt, exact a }, { intro x, induction x, exact pt, exact pt, exact a },
{ reflexivity }, { reflexivity },
end end
definition loop_psusp_counit_natural (f : X →* Y) definition loop_susp_counit_natural (f : X →* Y)
: f ∘* loop_psusp_counit X ~* loop_psusp_counit Y ∘* (psusp_functor (ap1 f)) := : f ∘* loop_susp_counit X ~* loop_susp_counit Y ∘* (susp_functor (ap1 f)) :=
begin begin
induction X with X x, induction Y with Y y, induction f with f pf, esimp at *, induction pf, induction X with X x, induction Y with Y y, induction f with f pf, esimp at *, induction pf,
fconstructor, fconstructor,
@ -313,8 +307,8 @@ namespace susp
{ reflexivity } { reflexivity }
end end
definition loop_psusp_counit_unit (X : Type*) definition loop_susp_counit_unit (X : Type*)
: ap1 (loop_psusp_counit X) ∘* loop_psusp_unit (Ω X) ~* pid (Ω X) := : ap1 (loop_susp_counit X) ∘* loop_susp_unit (Ω X) ~* pid (Ω X) :=
begin begin
induction X with X x, fconstructor, induction X with X x, fconstructor,
{ intro p, esimp, { intro p, esimp,
@ -328,8 +322,8 @@ namespace susp
-ap_compose] } -ap_compose] }
end end
definition loop_psusp_unit_counit (X : Type*) definition loop_susp_unit_counit (X : Type*)
: loop_psusp_counit (psusp X) ∘* psusp_functor (loop_psusp_unit X) ~* pid (psusp X) := : loop_susp_counit (susp X) ∘* susp_functor (loop_susp_unit X) ~* pid (susp X) :=
begin begin
induction X with X x, fconstructor, induction X with X x, fconstructor,
{ intro x', induction x', { intro x', induction x',
@ -341,152 +335,141 @@ namespace susp
{ reflexivity } { reflexivity }
end end
definition psusp.elim [constructor] {X Y : Type*} (f : X →* Ω Y) : psusp X →* Y := definition susp_elim [constructor] {X Y : Type*} (f : X →* Ω Y) : susp X →* Y :=
loop_psusp_counit Y ∘* psusp_functor f loop_susp_counit Y ∘* susp_functor f
definition loop_psusp_intro [constructor] {X Y : Type*} (f : psusp X →* Y) : X →* Ω Y := definition loop_susp_intro [constructor] {X Y : Type*} (f : susp X →* Y) : X →* Ω Y :=
ap1 f ∘* loop_psusp_unit X ap1 f ∘* loop_susp_unit X
definition psusp_elim_psusp_functor {A B C : Type*} (g : B →* Ω C) (f : A →* B) : definition susp_elim_susp_functor {A B C : Type*} (g : B →* Ω C) (f : A →* B) :
psusp.elim g ∘* psusp_functor f ~* psusp.elim (g ∘* f) := susp_elim g ∘* susp_functor f ~* susp_elim (g ∘* f) :=
begin begin
refine !passoc ⬝* _, exact pwhisker_left _ !psusp_functor_pcompose⁻¹* refine !passoc ⬝* _, exact pwhisker_left _ !susp_functor_pcompose⁻¹*
end end
definition psusp_elim_phomotopy {A B : Type*} {f g : A →* Ω B} (p : f ~* g) : psusp.elim f ~* psusp.elim g := definition susp_elim_phomotopy {A B : Type*} {f g : A →* Ω B} (p : f ~* g) : susp_elim f ~* susp_elim g :=
pwhisker_left _ (psusp_functor_phomotopy p) pwhisker_left _ (susp_functor_phomotopy p)
definition psusp_elim_natural {X Y Z : Type*} (g : Y →* Z) (f : X →* Ω Y) definition susp_elim_natural {X Y Z : Type*} (g : Y →* Z) (f : X →* Ω Y)
: g ∘* psusp.elim f ~* psusp.elim (Ω→ g ∘* f) := : g ∘* susp_elim f ~* susp_elim (Ω→ g ∘* f) :=
begin begin
refine _ ⬝* pwhisker_left _ !psusp_functor_pcompose⁻¹*, refine _ ⬝* pwhisker_left _ !susp_functor_pcompose⁻¹*,
refine !passoc⁻¹* ⬝* _ ⬝* !passoc, refine !passoc⁻¹* ⬝* _ ⬝* !passoc,
exact pwhisker_right _ !loop_psusp_counit_natural exact pwhisker_right _ !loop_susp_counit_natural
end end
definition loop_psusp_intro_natural {X Y Z : Type*} (g : psusp Y →* Z) (f : X →* Y) : definition loop_susp_intro_natural {X Y Z : Type*} (g : susp Y →* Z) (f : X →* Y) :
loop_psusp_intro (g ∘* psusp_functor f) ~* loop_psusp_intro g ∘* f := loop_susp_intro (g ∘* susp_functor f) ~* loop_susp_intro g ∘* f :=
pwhisker_right _ !ap1_pcompose ⬝* !passoc ⬝* pwhisker_left _ !loop_psusp_unit_natural⁻¹* ⬝* pwhisker_right _ !ap1_pcompose ⬝* !passoc ⬝* pwhisker_left _ !loop_susp_unit_natural⁻¹* ⬝*
!passoc⁻¹* !passoc⁻¹*
definition psusp_adjoint_loop_right_inv {X Y : Type*} (g : X →* Ω Y) : definition susp_adjoint_loop_right_inv {X Y : Type*} (g : X →* Ω Y) :
loop_psusp_intro (psusp.elim g) ~* g := loop_susp_intro (susp_elim g) ~* g :=
begin begin
refine !pwhisker_right !ap1_pcompose ⬝* _, refine !pwhisker_right !ap1_pcompose ⬝* _,
refine !passoc ⬝* _, refine !passoc ⬝* _,
refine !pwhisker_left !loop_psusp_unit_natural⁻¹* ⬝* _, refine !pwhisker_left !loop_susp_unit_natural⁻¹* ⬝* _,
refine !passoc⁻¹* ⬝* _, refine !passoc⁻¹* ⬝* _,
refine !pwhisker_right !loop_psusp_counit_unit ⬝* _, refine !pwhisker_right !loop_susp_counit_unit ⬝* _,
apply pid_pcompose apply pid_pcompose
end end
definition psusp_adjoint_loop_left_inv {X Y : Type*} (f : psusp X →* Y) : definition susp_adjoint_loop_left_inv {X Y : Type*} (f : susp X →* Y) :
psusp.elim (loop_psusp_intro f) ~* f := susp_elim (loop_susp_intro f) ~* f :=
begin begin
refine !pwhisker_left !psusp_functor_pcompose ⬝* _, refine !pwhisker_left !susp_functor_pcompose ⬝* _,
refine !passoc⁻¹* ⬝* _, refine !passoc⁻¹* ⬝* _,
refine !pwhisker_right !loop_psusp_counit_natural⁻¹* ⬝* _, refine !pwhisker_right !loop_susp_counit_natural⁻¹* ⬝* _,
refine !passoc ⬝* _, refine !passoc ⬝* _,
refine !pwhisker_left !loop_psusp_unit_counit ⬝* _, refine !pwhisker_left !loop_susp_unit_counit ⬝* _,
apply pcompose_pid apply pcompose_pid
end end
definition psusp_adjoint_loop_unpointed [constructor] (X Y : Type*) : psusp X →* Y ≃ X →* Ω Y := definition susp_adjoint_loop_unpointed [constructor] (X Y : Type*) : susp X →* Y ≃ X →* Ω Y :=
begin begin
fapply equiv.MK, fapply equiv.MK,
{ exact loop_psusp_intro }, { exact loop_susp_intro },
{ exact psusp.elim }, { exact susp_elim },
{ intro g, apply eq_of_phomotopy, exact psusp_adjoint_loop_right_inv g }, { intro g, apply eq_of_phomotopy, exact susp_adjoint_loop_right_inv g },
{ intro f, apply eq_of_phomotopy, exact psusp_adjoint_loop_left_inv f } { intro f, apply eq_of_phomotopy, exact susp_adjoint_loop_left_inv f }
end end
definition psusp_adjoint_loop_pconst (X Y : Type*) : definition susp_adjoint_loop_pconst (X Y : Type*) :
psusp_adjoint_loop_unpointed X Y (pconst (psusp X) Y) ~* pconst X (Ω Y) := susp_adjoint_loop_unpointed X Y (pconst (susp X) Y) ~* pconst X (Ω Y) :=
begin begin
refine pwhisker_right _ !ap1_pconst ⬝* _, refine pwhisker_right _ !ap1_pconst ⬝* _,
apply pconst_pcompose apply pconst_pcompose
end end
definition psusp_adjoint_loop [constructor] (X Y : Type*) : ppmap (psusp X) Y ≃* ppmap X (Ω Y) := definition susp_adjoint_loop [constructor] (X Y : Type*) : ppmap (susp X) Y ≃* ppmap X (Ω Y) :=
begin begin
apply pequiv_of_equiv (psusp_adjoint_loop_unpointed X Y), apply pequiv_of_equiv (susp_adjoint_loop_unpointed X Y),
apply eq_of_phomotopy, apply eq_of_phomotopy,
apply psusp_adjoint_loop_pconst apply susp_adjoint_loop_pconst
end end
definition ap1_psusp_elim {A : Type*} {X : Type*} (p : A →* Ω X) : definition ap1_susp_elim {A : Type*} {X : Type*} (p : A →* Ω X) :
Ω→(psusp.elim p) ∘* loop_psusp_unit A ~* p := Ω→(susp_elim p) ∘* loop_susp_unit A ~* p :=
psusp_adjoint_loop_right_inv p susp_adjoint_loop_right_inv p
definition psusp_adjoint_loop_nat_right (f : psusp X →* Y) (g : Y →* Z) definition susp_adjoint_loop_nat_right (f : susp X →* Y) (g : Y →* Z)
: psusp_adjoint_loop X Z (g ∘* f) ~* ap1 g ∘* psusp_adjoint_loop X Y f := : susp_adjoint_loop X Z (g ∘* f) ~* ap1 g ∘* susp_adjoint_loop X Y f :=
begin begin
esimp [psusp_adjoint_loop], esimp [susp_adjoint_loop],
refine _ ⬝* !passoc, refine _ ⬝* !passoc,
apply pwhisker_right, apply pwhisker_right,
apply ap1_pcompose apply ap1_pcompose
end end
definition psusp_adjoint_loop_nat_left (f : Y →* Ω Z) (g : X →* Y) definition susp_adjoint_loop_nat_left (f : Y →* Ω Z) (g : X →* Y)
: (psusp_adjoint_loop X Z)⁻¹ᵉ (f ∘* g) ~* (psusp_adjoint_loop Y Z)⁻¹ᵉ f ∘* psusp_functor g := : (susp_adjoint_loop X Z)⁻¹ᵉ (f ∘* g) ~* (susp_adjoint_loop Y Z)⁻¹ᵉ f ∘* susp_functor g :=
begin begin
esimp [psusp_adjoint_loop], esimp [susp_adjoint_loop],
refine _ ⬝* !passoc⁻¹*, refine _ ⬝* !passoc⁻¹*,
apply pwhisker_left, apply pwhisker_left,
apply psusp_functor_pcompose apply susp_functor_pcompose
end end
/- iterated suspension -/ /- iterated suspension -/
definition iterate_susp (n : ) (A : Type) : Type := iterate susp n A definition iterate_susp (n : ) (A : Type*) : Type* := iterate (λX, susp X) n A
definition iterate_psusp (n : ) (A : Type*) : Type* := iterate (λX, psusp X) n A
open is_conn trunc_index nat open is_conn trunc_index nat
definition iterate_susp_succ (n : ) (A : Type) : definition iterate_susp_succ (n : ) (A : Type*) :
iterate_susp (succ n) A = susp (iterate_susp n A) := iterate_susp (succ n) A = susp (iterate_susp n A) :=
idp idp
definition is_conn_iterate_susp [instance] (n : ℕ₋₂) (m : ) (A : Type) definition is_conn_iterate_susp [instance] (n : ℕ₋₂) (m : ) (A : Type*)
[H : is_conn n A] : is_conn (n + m) (iterate_susp m A) := [H : is_conn n A] : is_conn (n + m) (iterate_susp m A) :=
begin induction m with m IH, exact H, exact @is_conn_susp _ _ IH end begin induction m with m IH, exact H, exact @is_conn_susp _ _ IH end
definition is_conn_iterate_psusp [instance] (n : ℕ₋₂) (m : ) (A : Type*)
[H : is_conn n A] : is_conn (n + m) (iterate_psusp m A) :=
begin induction m with m IH, exact H, exact @is_conn_susp _ _ IH end
-- Separate cases for n = 0, which comes up often -- Separate cases for n = 0, which comes up often
definition is_conn_iterate_susp_zero [instance] (m : ) (A : Type) definition is_conn_iterate_susp_zero [instance] (m : ) (A : Type*)
[H : is_conn 0 A] : is_conn m (iterate_susp m A) := [H : is_conn 0 A] : is_conn m (iterate_susp m A) :=
begin induction m with m IH, exact H, exact @is_conn_susp _ _ IH end begin induction m with m IH, exact H, exact @is_conn_susp _ _ IH end
definition is_conn_iterate_psusp_zero [instance] (m : ) (A : Type*) definition iterate_susp_functor (n : ) {A B : Type*} (f : A →* B) :
[H : is_conn 0 A] : is_conn m (iterate_psusp m A) := iterate_susp n A →* iterate_susp n B :=
begin induction m with m IH, exact H, exact @is_conn_susp _ _ IH end
definition iterate_psusp_functor (n : ) {A B : Type*} (f : A →* B) :
iterate_psusp n A →* iterate_psusp n B :=
begin begin
induction n with n g, induction n with n g,
{ exact f }, { exact f },
{ exact psusp_functor g } { exact susp_functor g }
end end
definition iterate_psusp_succ_in (n : ) (A : Type*) : definition iterate_susp_succ_in (n : ) (A : Type*) :
iterate_psusp (succ n) A ≃* iterate_psusp n (psusp A) := iterate_susp (succ n) A ≃* iterate_susp n (susp A) :=
begin begin
induction n with n IH, induction n with n IH,
{ reflexivity}, { reflexivity},
{ exact psusp_pequiv IH} { exact susp_pequiv IH}
end end
definition iterate_psusp_adjoint_loopn [constructor] (X Y : Type*) (n : ) : definition iterate_susp_adjoint_loopn [constructor] (X Y : Type*) (n : ) :
ppmap (iterate_psusp n X) Y ≃* ppmap X (Ω[n] Y) := ppmap (iterate_susp n X) Y ≃* ppmap X (Ω[n] Y) :=
begin begin
revert X Y, induction n with n IH: intro X Y, revert X Y, induction n with n IH: intro X Y,
{ reflexivity }, { reflexivity },
{ refine !psusp_adjoint_loop ⬝e* !IH ⬝e* _, apply pequiv_ppcompose_left, { refine !susp_adjoint_loop ⬝e* !IH ⬝e* _, apply pequiv_ppcompose_left,
symmetry, apply loopn_succ_in } symmetry, apply loopn_succ_in }
end end
end susp end susp

View file

@ -9,10 +9,10 @@ import hit.pushout .connectedness types.unit
open eq pushout pointed unit trunc_index open eq pushout pointed unit trunc_index
definition wedge (A B : Type*) : Type := ppushout (pconst punit A) (pconst punit B) definition wedge' (A B : Type*) : Type := ppushout (pconst punit A) (pconst punit B)
local attribute wedge [reducible] local attribute wedge' [reducible]
definition pwedge [constructor] (A B : Type*) : Type* := pointed.mk' (wedge A B) definition wedge [constructor] (A B : Type*) : Type* := pointed.mk' (wedge' A B)
infixr ` ` := pwedge infixr ` ` := wedge
namespace wedge namespace wedge
@ -21,11 +21,11 @@ namespace wedge
protected definition rec {A B : Type*} {P : wedge A B → Type} (Pinl : Π(x : A), P (inl x)) protected definition rec {A B : Type*} {P : wedge A B → Type} (Pinl : Π(x : A), P (inl x))
(Pinr : Π(x : B), P (inr x)) (Pglue : pathover P (Pinl pt) wedge.glue (Pinr pt)) (Pinr : Π(x : B), P (inr x)) (Pglue : pathover P (Pinl pt) wedge.glue (Pinr pt))
(y : wedge A B) : P y := (y : wedge' A B) : P y :=
by induction y; apply Pinl; apply Pinr; induction x; exact Pglue by induction y; apply Pinl; apply Pinr; induction x; exact Pglue
protected definition elim {A B : Type*} {P : Type} (Pinl : A → P) protected definition elim {A B : Type*} {P : Type} (Pinl : A → P)
(Pinr : B → P) (Pglue : Pinl pt = Pinr pt) (y : wedge A B) : P := (Pinr : B → P) (Pglue : Pinl pt = Pinr pt) (y : wedge' A B) : P :=
by induction y with a b x; exact Pinl a; exact Pinr b; induction x; exact Pglue by induction y with a b x; exact Pinl a; exact Pinr b; induction x; exact Pglue
protected definition rec_glue {A B : Type*} {P : wedge A B → Type} (Pinl : Π(x : A), P (inl x)) protected definition rec_glue {A B : Type*} {P : wedge A B → Type} (Pinl : Π(x : A), P (inl x))
@ -33,11 +33,10 @@ namespace wedge
apd (wedge.rec Pinl Pinr Pglue) wedge.glue = Pglue := apd (wedge.rec Pinl Pinr Pglue) wedge.glue = Pglue :=
!pushout.rec_glue !pushout.rec_glue
protected definition elim_glue {A B : Type*} {P : Type} (Pinl : A → P) protected definition elim_glue {A B : Type*} {P : Type} (Pinl : A → P) (Pinr : B → P)
(Pinr : B → P) (Pglue : Pinl pt = Pinr pt) : ap (wedge.elim Pinl Pinr Pglue) wedge.glue = Pglue := (Pglue : Pinl pt = Pinr pt) : ap (wedge.elim Pinl Pinr Pglue) wedge.glue = Pglue :=
!pushout.elim_glue !pushout.elim_glue
end wedge end wedge
attribute wedge.rec wedge.elim [recursor 7] [unfold 7] attribute wedge.rec wedge.elim [recursor 7] [unfold 7]
@ -45,7 +44,7 @@ attribute wedge.rec wedge.elim [recursor 7] [unfold 7]
namespace wedge namespace wedge
-- TODO maybe find a cleaner proof -- TODO maybe find a cleaner proof
protected definition unit (A : Type*) : A ≃* pwedge punit A := protected definition unit (A : Type*) : A ≃* wedge punit A :=
begin begin
fapply pequiv_of_pmap, fapply pequiv_of_pmap,
{ fapply pmap.mk, intro a, apply pinr a, apply respect_pt }, { fapply pmap.mk, intro a, apply pinr a, apply respect_pt },