refactor(library/hott/path): use HoTT book notation for path concatenation and inverse

This commit is contained in:
Leonardo de Moura 2014-10-21 16:11:55 -07:00
parent e24225fabf
commit dea3357d7c

View file

@ -36,142 +36,142 @@ path.rec (λu, u) q p
definition inverse {A : Type} {x y : A} (p : x ≈ y) : y ≈ x := definition inverse {A : Type} {x y : A} (p : x ≈ y) : y ≈ x :=
path.rec (idpath x) p path.rec (idpath x) p
infixl `@`:75 := concat notation p₁ ⬝ p₂ := concat p₁ p₂
postfix `^`:100 := inverse notation p ⁻¹ := inverse p
-- In Coq, these are not needed, because concat and inv are kept transparent -- In Coq, these are not needed, because concat and inv are kept transparent
-- definition inv_1 {A : Type} (x : A) : (idpath x)^ ≈ idpath x := idp -- definition inv_1 {A : Type} (x : A) : (idpath x)⁻¹ ≈ idpath x := idp
-- definition concat_11 {A : Type} (x : A) : idpath x @ idpath x ≈ idpath x := idp -- definition concat_11 {A : Type} (x : A) : idpath x idpath x ≈ idpath x := idp
-- The 1-dimensional groupoid structure -- The 1-dimensional groupoid structure
-- ------------------------------------ -- ------------------------------------
-- The identity path is a right unit. -- The identity path is a right unit.
definition concat_p1 {A : Type} {x y : A} (p : x ≈ y) : p @ idp ≈ p := definition concat_p1 {A : Type} {x y : A} (p : x ≈ y) : p idp ≈ p :=
induction_on p idp induction_on p idp
-- The identity path is a right unit. -- The identity path is a right unit.
definition concat_1p {A : Type} {x y : A} (p : x ≈ y) : idp @ p ≈ p := definition concat_1p {A : Type} {x y : A} (p : x ≈ y) : idp p ≈ p :=
induction_on p idp induction_on p idp
-- Concatenation is associative. -- Concatenation is associative.
definition concat_p_pp {A : Type} {x y z t : A} (p : x ≈ y) (q : y ≈ z) (r : z ≈ t) : definition concat_p_pp {A : Type} {x y z t : A} (p : x ≈ y) (q : y ≈ z) (r : z ≈ t) :
p @ (q @ r) ≈ (p @ q) @ r := p ⬝ (q ⬝ r) ≈ (p ⬝ q) ⬝ r :=
induction_on r (induction_on q idp) induction_on r (induction_on q idp)
definition concat_pp_p {A : Type} {x y z t : A} (p : x ≈ y) (q : y ≈ z) (r : z ≈ t) : definition concat_pp_p {A : Type} {x y z t : A} (p : x ≈ y) (q : y ≈ z) (r : z ≈ t) :
(p @ q) @ r ≈ p @ (q @ r) := (p ⬝ q) ⬝ r ≈ p ⬝ (q ⬝ r) :=
induction_on r (induction_on q idp) induction_on r (induction_on q idp)
-- The left inverse law. -- The left inverse law.
definition concat_pV {A : Type} {x y : A} (p : x ≈ y) : p @ p^ ≈ idp := definition concat_pV {A : Type} {x y : A} (p : x ≈ y) : p ⬝ p⁻¹ ≈ idp :=
induction_on p idp induction_on p idp
-- The right inverse law. -- The right inverse law.
definition concat_Vp {A : Type} {x y : A} (p : x ≈ y) : p^ @ p ≈ idp := definition concat_Vp {A : Type} {x y : A} (p : x ≈ y) : p⁻¹ ⬝ p ≈ idp :=
induction_on p idp induction_on p idp
-- Several auxiliary theorems about canceling inverses across associativity. These are somewhat -- Several auxiliary theorems about canceling inverses across associativity. These are somewhat
-- redundant, following from earlier theorems. -- redundant, following from earlier theorems.
definition concat_V_pp {A : Type} {x y z : A} (p : x ≈ y) (q : y ≈ z) : p^ @ (p @ q) ≈ q := definition concat_V_pp {A : Type} {x y z : A} (p : x ≈ y) (q : y ≈ z) : p⁻¹ ⬝ (p ⬝ q) ≈ q :=
induction_on q (induction_on p idp) induction_on q (induction_on p idp)
definition concat_p_Vp {A : Type} {x y z : A} (p : x ≈ y) (q : x ≈ z) : p @ (p^ @ q) ≈ q := definition concat_p_Vp {A : Type} {x y z : A} (p : x ≈ y) (q : x ≈ z) : p ⬝ (p⁻¹ ⬝ q) ≈ q :=
induction_on q (induction_on p idp) induction_on q (induction_on p idp)
definition concat_pp_V {A : Type} {x y z : A} (p : x ≈ y) (q : y ≈ z) : (p @ q) @ q^ ≈ p := definition concat_pp_V {A : Type} {x y z : A} (p : x ≈ y) (q : y ≈ z) : (p ⬝ q) ⬝ q⁻¹ ≈ p :=
induction_on q (induction_on p idp) induction_on q (induction_on p idp)
definition concat_pV_p {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) : (p @ q^) @ q ≈ p := definition concat_pV_p {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) : (p ⬝ q⁻¹) ⬝ q ≈ p :=
induction_on q (take p, induction_on p idp) p induction_on q (take p, induction_on p idp) p
-- Inverse distributes over concatenation -- Inverse distributes over concatenation
definition inv_pp {A : Type} {x y z : A} (p : x ≈ y) (q : y ≈ z) : (p @ q)^ ≈ q^ @ p^ := definition inv_pp {A : Type} {x y z : A} (p : x ≈ y) (q : y ≈ z) : (p ⬝ q)⁻¹ ≈ q⁻¹ ⬝ p⁻¹ :=
induction_on q (induction_on p idp) induction_on q (induction_on p idp)
definition inv_Vp {A : Type} {x y z : A} (p : y ≈ x) (q : y ≈ z) : (p^ @ q)^ ≈ q^ @ p := definition inv_Vp {A : Type} {x y z : A} (p : y ≈ x) (q : y ≈ z) : (p⁻¹ ⬝ q)⁻¹ ≈ q⁻¹ ⬝ p :=
induction_on q (induction_on p idp) induction_on q (induction_on p idp)
-- universe metavariables -- universe metavariables
definition inv_pV {A : Type} {x y z : A} (p : x ≈ y) (q : z ≈ y) : (p @ q^)^ ≈ q @ p^ := definition inv_pV {A : Type} {x y z : A} (p : x ≈ y) (q : z ≈ y) : (p ⬝ q⁻¹)⁻¹ ≈ q ⬝ p⁻¹ :=
induction_on p (take q, induction_on q idp) q induction_on p (take q, induction_on q idp) q
definition inv_VV {A : Type} {x y z : A} (p : y ≈ x) (q : z ≈ y) : (p^ @ q^)^ ≈ q @ p := definition inv_VV {A : Type} {x y z : A} (p : y ≈ x) (q : z ≈ y) : (p⁻¹ ⬝ q⁻¹)⁻¹ ≈ q ⬝ p :=
induction_on p (induction_on q idp) induction_on p (induction_on q idp)
-- Inverse is an involution. -- Inverse is an involution.
definition inv_V {A : Type} {x y : A} (p : x ≈ y) : p^^ ≈ p := definition inv_V {A : Type} {x y : A} (p : x ≈ y) : p⁻¹⁻¹ ≈ p :=
induction_on p idp induction_on p idp
-- Theorems for moving things around in equations -- Theorems for moving things around in equations
-- ---------------------------------------------- -- ----------------------------------------------
definition moveR_Mp {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) (r : y ≈ x) : definition moveR_Mp {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) (r : y ≈ x) :
p ≈ (r^ @ q) → (r @ p) ≈ q := p ≈ (r⁻¹ ⬝ q) → (r ⬝ p) ≈ q :=
induction_on r (take p h, concat_1p _ @ h @ concat_1p _) p induction_on r (take p h, concat_1p _ ⬝ h ⬝ concat_1p _) p
definition moveR_pM {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) (r : y ≈ x) : definition moveR_pM {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) (r : y ≈ x) :
r ≈ q @ p^ → r @ p ≈ q := r ≈ q ⬝ p⁻¹ → r ⬝ p ≈ q :=
induction_on p (take q h, (concat_p1 _ @ h @ concat_p1 _)) q induction_on p (take q h, (concat_p1 _ ⬝ h ⬝ concat_p1 _)) q
definition moveR_Vp {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) (r : x ≈ y) : definition moveR_Vp {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) (r : x ≈ y) :
p ≈ r @ q → r^ @ p ≈ q := p ≈ r ⬝ q → r⁻¹ ⬝ p ≈ q :=
induction_on r (take q h, concat_1p _ @ h @ concat_1p _) q induction_on r (take q h, concat_1p _ ⬝ h ⬝ concat_1p _) q
definition moveR_pV {A : Type} {x y z : A} (p : z ≈ x) (q : y ≈ z) (r : y ≈ x) : definition moveR_pV {A : Type} {x y z : A} (p : z ≈ x) (q : y ≈ z) (r : y ≈ x) :
r ≈ q @ p → r @ p^ ≈ q := r ≈ q ⬝ p → r ⬝ p⁻¹ ≈ q :=
induction_on p (take r h, concat_p1 _ @ h @ concat_p1 _) r induction_on p (take r h, concat_p1 _ ⬝ h ⬝ concat_p1 _) r
definition moveL_Mp {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) (r : y ≈ x) : definition moveL_Mp {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) (r : y ≈ x) :
r^ @ q ≈ p → q ≈ r @ p := r⁻¹ ⬝ q ≈ p → q ≈ r ⬝ p :=
induction_on r (take p h, (concat_1p _)^ @ h @ (concat_1p _)^) p induction_on r (take p h, (concat_1p _)⁻¹ ⬝ h ⬝ (concat_1p _)⁻¹) p
definition moveL_pM {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) (r : y ≈ x) : definition moveL_pM {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) (r : y ≈ x) :
q @ p^ ≈ r → q ≈ r @ p := q ⬝ p⁻¹ ≈ r → q ≈ r ⬝ p :=
induction_on p (take q h, (concat_p1 _)^ @ h @ (concat_p1 _)^) q induction_on p (take q h, (concat_p1 _)⁻¹ ⬝ h ⬝ (concat_p1 _)⁻¹) q
definition moveL_Vp {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) (r : x ≈ y) : definition moveL_Vp {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) (r : x ≈ y) :
r @ q ≈ p → q ≈ r^ @ p := r ⬝ q ≈ p → q ≈ r⁻¹ ⬝ p :=
induction_on r (take q h, (concat_1p _)^ @ h @ (concat_1p _)^) q induction_on r (take q h, (concat_1p _)⁻¹ ⬝ h ⬝ (concat_1p _)⁻¹) q
definition moveL_pV {A : Type} {x y z : A} (p : z ≈ x) (q : y ≈ z) (r : y ≈ x) : definition moveL_pV {A : Type} {x y z : A} (p : z ≈ x) (q : y ≈ z) (r : y ≈ x) :
q @ p ≈ r → q ≈ r @ p^ := q ⬝ p ≈ r → q ≈ r ⬝ p⁻¹ :=
induction_on p (take r h, (concat_p1 _)^ @ h @ (concat_p1 _)^) r induction_on p (take r h, (concat_p1 _)⁻¹ ⬝ h ⬝ (concat_p1 _)⁻¹) r
definition moveL_1M {A : Type} {x y : A} (p q : x ≈ y) : definition moveL_1M {A : Type} {x y : A} (p q : x ≈ y) :
p @ q^ ≈ idp → p ≈ q := p ⬝ q⁻¹ ≈ idp → p ≈ q :=
induction_on q (take p h, (concat_p1 _)^ @ h) p induction_on q (take p h, (concat_p1 _)⁻¹ ⬝ h) p
definition moveL_M1 {A : Type} {x y : A} (p q : x ≈ y) : definition moveL_M1 {A : Type} {x y : A} (p q : x ≈ y) :
q^ @ p ≈ idp → p ≈ q := q⁻¹ ⬝ p ≈ idp → p ≈ q :=
induction_on q (take p h, (concat_1p _)^ @ h) p induction_on q (take p h, (concat_1p _)⁻¹ ⬝ h) p
definition moveL_1V {A : Type} {x y : A} (p : x ≈ y) (q : y ≈ x) : definition moveL_1V {A : Type} {x y : A} (p : x ≈ y) (q : y ≈ x) :
p @ q ≈ idp → p ≈ q^ := p ⬝ q ≈ idp → p ≈ q⁻¹ :=
induction_on q (take p h, (concat_p1 _)^ @ h) p induction_on q (take p h, (concat_p1 _)⁻¹ ⬝ h) p
definition moveL_V1 {A : Type} {x y : A} (p : x ≈ y) (q : y ≈ x) : definition moveL_V1 {A : Type} {x y : A} (p : x ≈ y) (q : y ≈ x) :
q @ p ≈ idp → p ≈ q^ := q ⬝ p ≈ idp → p ≈ q⁻¹ :=
induction_on q (take p h, (concat_1p _)^ @ h) p induction_on q (take p h, (concat_1p _)⁻¹ ⬝ h) p
definition moveR_M1 {A : Type} {x y : A} (p q : x ≈ y) : definition moveR_M1 {A : Type} {x y : A} (p q : x ≈ y) :
idp ≈ p^ @ q → p ≈ q := idp ≈ p⁻¹ ⬝ q → p ≈ q :=
induction_on p (take q h, h @ (concat_1p _)) q induction_on p (take q h, h (concat_1p _)) q
definition moveR_1M {A : Type} {x y : A} (p q : x ≈ y) : definition moveR_1M {A : Type} {x y : A} (p q : x ≈ y) :
idp ≈ q @ p^ → p ≈ q := idp ≈ q ⬝ p⁻¹ → p ≈ q :=
induction_on p (take q h, h @ (concat_p1 _)) q induction_on p (take q h, h (concat_p1 _)) q
definition moveR_1V {A : Type} {x y : A} (p : x ≈ y) (q : y ≈ x) : definition moveR_1V {A : Type} {x y : A} (p : x ≈ y) (q : y ≈ x) :
idp ≈ q @ p → p^ ≈ q := idp ≈ q ⬝ p → p⁻¹ ≈ q :=
induction_on p (take q h, h @ (concat_p1 _)) q induction_on p (take q h, h (concat_p1 _)) q
definition moveR_V1 {A : Type} {x y : A} (p : x ≈ y) (q : y ≈ x) : definition moveR_V1 {A : Type} {x y : A} (p : x ≈ y) (q : y ≈ x) :
idp ≈ p @ q → p^ ≈ q := idp ≈ p ⬝ q → p⁻¹ ≈ q :=
induction_on p (take q h, h @ (concat_1p _)) q induction_on p (take q h, h (concat_1p _)) q
-- Transport -- Transport
@ -181,7 +181,7 @@ definition transport {A : Type} (P : A → Type) {x y : A} (p : x ≈ y) (u : P
path.induction_on p u path.induction_on p u
-- This idiom makes the operation right associative. -- This idiom makes the operation right associative.
notation p `#`:65 x:64 := transport _ p x notation p ``:65 x:64 := transport _ p x
definition ap ⦃A B : Type⦄ (f : A → B) {x y:A} (p : x ≈ y) : f x ≈ f y := definition ap ⦃A B : Type⦄ (f : A → B) {x y:A} (p : x ≈ y) : f x ≈ f y :=
path.induction_on p idp path.induction_on p idp
@ -191,7 +191,7 @@ definition ap01 := ap
definition pointwise_paths {A : Type} {P : A → Type} (f g : Πx, P x) : Type := definition pointwise_paths {A : Type} {P : A → Type} (f g : Πx, P x) : Type :=
Πx : A, f x ≈ g x Πx : A, f x ≈ g x
infix `` := pointwise_paths notation f g := pointwise_paths f g
definition apD10 {A} {B : A → Type} {f g : Πx, B x} (H : f ≈ g) : f g := definition apD10 {A} {B : A → Type} {f g : Πx, B x} (H : f ≈ g) : f g :=
λx, path.induction_on H idp λx, path.induction_on H idp
@ -201,7 +201,7 @@ definition ap10 {A B} {f g : A → B} (H : f ≈ g) : f g := apD10 H
definition ap11 {A B} {f g : A → B} (H : f ≈ g) {x y : A} (p : x ≈ y) : f x ≈ g y := definition ap11 {A B} {f g : A → B} (H : f ≈ g) {x y : A} (p : x ≈ y) : f x ≈ g y :=
induction_on H (induction_on p idp) induction_on H (induction_on p idp)
definition apD {A:Type} {B : A → Type} (f : Πa:A, B a) {x y : A} (p : x ≈ y) : p # (f x) ≈ f y := definition apD {A:Type} {B : A → Type} (f : Πa:A, B a) {x y : A} (p : x ≈ y) : p (f x) ≈ f y :=
induction_on p idp induction_on p idp
@ -217,19 +217,19 @@ calc_refl idpath
-- --------------------------------------------------- -- ---------------------------------------------------
definition moveR_transport_p {A : Type} (P : A → Type) {x y : A} (p : x ≈ y) (u : P x) (v : P y) : definition moveR_transport_p {A : Type} (P : A → Type) {x y : A} (p : x ≈ y) (u : P x) (v : P y) :
u ≈ p^ # v → p # u ≈ v := u ≈ p⁻¹ ▹ v → p ▹ u ≈ v :=
induction_on p (take v, id) v induction_on p (take v, id) v
definition moveR_transport_V {A : Type} (P : A → Type) {x y : A} (p : y ≈ x) (u : P x) (v : P y) : definition moveR_transport_V {A : Type} (P : A → Type) {x y : A} (p : y ≈ x) (u : P x) (v : P y) :
u ≈ p # v → p^ # u ≈ v := u ≈ p ▹ v → p⁻¹ ▹ u ≈ v :=
induction_on p (take u, id) u induction_on p (take u, id) u
definition moveL_transport_V {A : Type} (P : A → Type) {x y : A} (p : x ≈ y) (u : P x) (v : P y) : definition moveL_transport_V {A : Type} (P : A → Type) {x y : A} (p : x ≈ y) (u : P x) (v : P y) :
p # u ≈ v → u ≈ p^ # v := p ▹ u ≈ v → u ≈ p⁻¹ ▹ v :=
induction_on p (take v, id) v induction_on p (take v, id) v
definition moveL_transport_p {A : Type} (P : A → Type) {x y : A} (p : y ≈ x) (u : P x) (v : P y) : definition moveL_transport_p {A : Type} (P : A → Type) {x y : A} (p : y ≈ x) (u : P x) (v : P y) :
p^ # u ≈ v → u ≈ p # v := p⁻¹ ▹ u ≈ v → u ≈ p ▹ v :=
induction_on p (take u, id) u induction_on p (take u, id) u
-- Functoriality of functions -- Functoriality of functions
@ -245,22 +245,22 @@ definition apD_1 {A B} (x : A) (f : Π x : A, B x) : apD f idp ≈ idp :> (f x
-- Functions commute with concatenation. -- Functions commute with concatenation.
definition ap_pp {A B : Type} (f : A → B) {x y z : A} (p : x ≈ y) (q : y ≈ z) : definition ap_pp {A B : Type} (f : A → B) {x y z : A} (p : x ≈ y) (q : y ≈ z) :
ap f (p @ q) ≈ (ap f p) @ (ap f q) := ap f (p ⬝ q) ≈ (ap f p) ⬝ (ap f q) :=
induction_on q (induction_on p idp) induction_on q (induction_on p idp)
definition ap_p_pp {A B : Type} (f : A → B) {w x y z : A} (r : f w ≈ f x) (p : x ≈ y) (q : y ≈ z) : definition ap_p_pp {A B : Type} (f : A → B) {w x y z : A} (r : f w ≈ f x) (p : x ≈ y) (q : y ≈ z) :
r @ (ap f (p @ q)) ≈ (r @ ap f p) @ (ap f q) := r ⬝ (ap f (p ⬝ q)) ≈ (r ⬝ ap f p) ⬝ (ap f q) :=
induction_on q (take p, induction_on p (concat_p_pp r idp idp)) p induction_on q (take p, induction_on p (concat_p_pp r idp idp)) p
definition ap_pp_p {A B : Type} (f : A → B) {w x y z : A} (p : x ≈ y) (q : y ≈ z) (r : f z ≈ f w) : definition ap_pp_p {A B : Type} (f : A → B) {w x y z : A} (p : x ≈ y) (q : y ≈ z) (r : f z ≈ f w) :
(ap f (p @ q)) @ r ≈ (ap f p) @ (ap f q @ r) := (ap f (p ⬝ q)) ⬝ r ≈ (ap f p) ⬝ (ap f q ⬝ r) :=
induction_on q (induction_on p (take r, concat_pp_p _ _ _)) r induction_on q (induction_on p (take r, concat_pp_p _ _ _)) r
-- Functions commute with path inverses. -- Functions commute with path inverses.
definition inverse_ap {A B : Type} (f : A → B) {x y : A} (p : x ≈ y) : (ap f p)^ ≈ ap f (p^) := definition inverse_ap {A B : Type} (f : A → B) {x y : A} (p : x ≈ y) : (ap f p)⁻¹ ≈ ap f (p⁻¹) :=
induction_on p idp induction_on p idp
definition ap_V {A B : Type} (f : A → B) {x y : A} (p : x ≈ y) : ap f (p^) ≈ (ap f p)^ := definition ap_V {A B : Type} (f : A → B) {x y : A} (p : x ≈ y) : ap f (p⁻¹) ≈ (ap f p)⁻¹ :=
induction_on p idp induction_on p idp
-- [ap] itself is functorial in the first argument. -- [ap] itself is functorial in the first argument.
@ -284,71 +284,71 @@ induction_on p idp
-- Naturality of [ap]. -- Naturality of [ap].
definition concat_Ap {A B : Type} {f g : A → B} (p : Π x, f x ≈ g x) {x y : A} (q : x ≈ y) : definition concat_Ap {A B : Type} {f g : A → B} (p : Π x, f x ≈ g x) {x y : A} (q : x ≈ y) :
(ap f q) @ (p y) ≈ (p x) @ (ap g q) := (ap f q) ⬝ (p y) ≈ (p x) ⬝ (ap g q) :=
induction_on q (concat_1p _ @ (concat_p1 _)^) induction_on q (concat_1p _ ⬝ (concat_p1 _)⁻¹)
-- Naturality of [ap] at identity. -- Naturality of [ap] at identity.
definition concat_A1p {A : Type} {f : A → A} (p : Πx, f x ≈ x) {x y : A} (q : x ≈ y) : definition concat_A1p {A : Type} {f : A → A} (p : Πx, f x ≈ x) {x y : A} (q : x ≈ y) :
(ap f q) @ (p y) ≈ (p x) @ q := (ap f q) ⬝ (p y) ≈ (p x) ⬝ q :=
induction_on q (concat_1p _ @ (concat_p1 _)^) induction_on q (concat_1p _ ⬝ (concat_p1 _)⁻¹)
definition concat_pA1 {A : Type} {f : A → A} (p : Πx, x ≈ f x) {x y : A} (q : x ≈ y) : definition concat_pA1 {A : Type} {f : A → A} (p : Πx, x ≈ f x) {x y : A} (q : x ≈ y) :
(p x) @ (ap f q) ≈ q @ (p y) := (p x) ⬝ (ap f q) ≈ q ⬝ (p y) :=
induction_on q (concat_p1 _ @ (concat_1p _)^) induction_on q (concat_p1 _ ⬝ (concat_1p _)⁻¹)
-- Naturality with other paths hanging around. -- Naturality with other paths hanging around.
definition concat_pA_pp {A B : Type} {f g : A → B} (p : Πx, f x ≈ g x) {x y : A} (q : x ≈ y) definition concat_pA_pp {A B : Type} {f g : A → B} (p : Πx, f x ≈ g x) {x y : A} (q : x ≈ y)
{w z : B} (r : w ≈ f x) (s : g y ≈ z) : {w z : B} (r : w ≈ f x) (s : g y ≈ z) :
(r @ ap f q) @ (p y @ s) ≈ (r @ p x) @ (ap g q @ s) := (r ⬝ ap f q) ⬝ (p y ⬝ s) ≈ (r ⬝ p x) ⬝ (ap g q ⬝ s) :=
induction_on s (induction_on q idp) induction_on s (induction_on q idp)
definition concat_pA_p {A B : Type} {f g : A → B} (p : Πx, f x ≈ g x) {x y : A} (q : x ≈ y) definition concat_pA_p {A B : Type} {f g : A → B} (p : Πx, f x ≈ g x) {x y : A} (q : x ≈ y)
{w : B} (r : w ≈ f x) : {w : B} (r : w ≈ f x) :
(r @ ap f q) @ p y ≈ (r @ p x) @ ap g q := (r ⬝ ap f q) ⬝ p y ≈ (r ⬝ p x) ⬝ ap g q :=
induction_on q idp induction_on q idp
-- TODO: try this using the simplifier, and compare proofs -- TODO: try this using the simplifier, and compare proofs
definition concat_A_pp {A B : Type} {f g : A → B} (p : Πx, f x ≈ g x) {x y : A} (q : x ≈ y) definition concat_A_pp {A B : Type} {f g : A → B} (p : Πx, f x ≈ g x) {x y : A} (q : x ≈ y)
{z : B} (s : g y ≈ z) : {z : B} (s : g y ≈ z) :
(ap f q) @ (p y @ s) ≈ (p x) @ (ap g q @ s) := (ap f q) ⬝ (p y ⬝ s) ≈ (p x) ⬝ (ap g q ⬝ s) :=
induction_on s (induction_on q induction_on s (induction_on q
(calc (calc
(ap f idp) @ (p x @ idp) ≈ idp @ p x : idp (ap f idp) ⬝ (p x ⬝ idp) ≈ idp ⬝ p x : idp
... ≈ p x : concat_1p _ ... ≈ p x : concat_1p _
... ≈ (p x) @ (ap g idp @ idp) : idp)) ... ≈ (p x) ⬝ (ap g idp ⬝ idp) : idp))
-- This also works: -- This also works:
-- induction_on s (induction_on q (concat_1p _ # idp)) -- induction_on s (induction_on q (concat_1p _ idp))
definition concat_pA1_pp {A : Type} {f : A → A} (p : Πx, f x ≈ x) {x y : A} (q : x ≈ y) definition concat_pA1_pp {A : Type} {f : A → A} (p : Πx, f x ≈ x) {x y : A} (q : x ≈ y)
{w z : A} (r : w ≈ f x) (s : y ≈ z) : {w z : A} (r : w ≈ f x) (s : y ≈ z) :
(r @ ap f q) @ (p y @ s) ≈ (r @ p x) @ (q @ s) := (r ⬝ ap f q) ⬝ (p y ⬝ s) ≈ (r ⬝ p x) ⬝ (q ⬝ s) :=
induction_on s (induction_on q idp) induction_on s (induction_on q idp)
definition concat_pp_A1p {A : Type} {g : A → A} (p : Πx, x ≈ g x) {x y : A} (q : x ≈ y) definition concat_pp_A1p {A : Type} {g : A → A} (p : Πx, x ≈ g x) {x y : A} (q : x ≈ y)
{w z : A} (r : w ≈ x) (s : g y ≈ z) : {w z : A} (r : w ≈ x) (s : g y ≈ z) :
(r @ p x) @ (ap g q @ s) ≈ (r @ q) @ (p y @ s) := (r ⬝ p x) ⬝ (ap g q ⬝ s) ≈ (r ⬝ q) ⬝ (p y ⬝ s) :=
induction_on s (induction_on q idp) induction_on s (induction_on q idp)
definition concat_pA1_p {A : Type} {f : A → A} (p : Πx, f x ≈ x) {x y : A} (q : x ≈ y) definition concat_pA1_p {A : Type} {f : A → A} (p : Πx, f x ≈ x) {x y : A} (q : x ≈ y)
{w : A} (r : w ≈ f x) : {w : A} (r : w ≈ f x) :
(r @ ap f q) @ p y ≈ (r @ p x) @ q := (r ⬝ ap f q) ⬝ p y ≈ (r ⬝ p x) ⬝ q :=
induction_on q idp induction_on q idp
definition concat_A1_pp {A : Type} {f : A → A} (p : Πx, f x ≈ x) {x y : A} (q : x ≈ y) definition concat_A1_pp {A : Type} {f : A → A} (p : Πx, f x ≈ x) {x y : A} (q : x ≈ y)
{z : A} (s : y ≈ z) : {z : A} (s : y ≈ z) :
(ap f q) @ (p y @ s) ≈ (p x) @ (q @ s) := (ap f q) ⬝ (p y ⬝ s) ≈ (p x) ⬝ (q ⬝ s) :=
induction_on s (induction_on q (concat_1p _ # idp)) induction_on s (induction_on q (concat_1p _ idp))
definition concat_pp_A1 {A : Type} {g : A → A} (p : Πx, x ≈ g x) {x y : A} (q : x ≈ y) definition concat_pp_A1 {A : Type} {g : A → A} (p : Πx, x ≈ g x) {x y : A} (q : x ≈ y)
{w : A} (r : w ≈ x) : {w : A} (r : w ≈ x) :
(r @ p x) @ ap g q ≈ (r @ q) @ p y := (r ⬝ p x) ⬝ ap g q ≈ (r ⬝ q) ⬝ p y :=
induction_on q idp induction_on q idp
definition concat_p_A1p {A : Type} {g : A → A} (p : Πx, x ≈ g x) {x y : A} (q : x ≈ y) definition concat_p_A1p {A : Type} {g : A → A} (p : Πx, x ≈ g x) {x y : A} (q : x ≈ y)
{z : A} (s : g y ≈ z) : {z : A} (s : g y ≈ z) :
p x @ (ap g q @ s) ≈ q @ (p y @ s) := p x ⬝ (ap g q ⬝ s) ≈ q ⬝ (p y ⬝ s) :=
induction_on s (induction_on q (concat_1p _ # idp)) induction_on s (induction_on q (concat_1p _ idp))
-- Action of [apD10] and [ap10] on paths -- Action of [apD10] and [ap10] on paths
@ -359,19 +359,19 @@ induction_on s (induction_on q (concat_1p _ # idp))
definition apD10_1 {A} {B : A → Type} (f : Πx, B x) (x : A) : apD10 (idpath f) x ≈ idp := idp definition apD10_1 {A} {B : A → Type} (f : Πx, B x) (x : A) : apD10 (idpath f) x ≈ idp := idp
definition apD10_pp {A} {B : A → Type} {f f' f'' : Πx, B x} (h : f ≈ f') (h' : f' ≈ f'') (x : A) : definition apD10_pp {A} {B : A → Type} {f f' f'' : Πx, B x} (h : f ≈ f') (h' : f' ≈ f'') (x : A) :
apD10 (h @ h') x ≈ apD10 h x @ apD10 h' x := apD10 (h ⬝ h') x ≈ apD10 h x ⬝ apD10 h' x :=
induction_on h (take h', induction_on h' idp) h' induction_on h (take h', induction_on h' idp) h'
definition apD10_V {A : Type} {B : A → Type} {f g : Πx : A, B x} (h : f ≈ g) (x : A) : definition apD10_V {A : Type} {B : A → Type} {f g : Πx : A, B x} (h : f ≈ g) (x : A) :
apD10 (h^) x ≈ (apD10 h x)^ := apD10 (h⁻¹) x ≈ (apD10 h x)⁻¹ :=
induction_on h idp induction_on h idp
definition ap10_1 {A B} {f : A → B} (x : A) : ap10 (idpath f) x ≈ idp := idp definition ap10_1 {A B} {f : A → B} (x : A) : ap10 (idpath f) x ≈ idp := idp
definition ap10_pp {A B} {f f' f'' : A → B} (h : f ≈ f') (h' : f' ≈ f'') (x : A) : definition ap10_pp {A B} {f f' f'' : A → B} (h : f ≈ f') (h' : f' ≈ f'') (x : A) :
ap10 (h @ h') x ≈ ap10 h x @ ap10 h' x := apD10_pp h h' x ap10 (h ⬝ h') x ≈ ap10 h x ⬝ ap10 h' x := apD10_pp h h' x
definition ap10_V {A B} {f g : A→B} (h : f ≈ g) (x:A) : ap10 (h^) x ≈ (ap10 h x)^ := apD10_V h x definition ap10_V {A B} {f g : A→B} (h : f ≈ g) (x:A) : ap10 (h⁻¹) x ≈ (ap10 h x)⁻¹ := apD10_V h x
-- [ap10] also behaves nicely on paths produced by [ap] -- [ap10] also behaves nicely on paths produced by [ap]
definition ap_ap10 {A B C} (f g : A → B) (h : B → C) (p : f ≈ g) (a : A) : definition ap_ap10 {A B C} (f g : A → B) (h : B → C) (p : f ≈ g) (a : A) :
@ -383,26 +383,26 @@ induction_on p idp
-- --------------------------------------------- -- ---------------------------------------------
definition transport_1 {A : Type} (P : A → Type) {x : A} (u : P x) : definition transport_1 {A : Type} (P : A → Type) {x : A} (u : P x) :
idp # u ≈ u := idp idp u ≈ u := idp
definition transport_pp {A : Type} (P : A → Type) {x y z : A} (p : x ≈ y) (q : y ≈ z) (u : P x) : definition transport_pp {A : Type} (P : A → Type) {x y z : A} (p : x ≈ y) (q : y ≈ z) (u : P x) :
p @ q # u ≈ q # p # u := p ⬝ q ▹ u ≈ q ▹ p ▹ u :=
induction_on q (induction_on p idp) induction_on q (induction_on p idp)
definition transport_pV {A : Type} (P : A → Type) {x y : A} (p : x ≈ y) (z : P y) : definition transport_pV {A : Type} (P : A → Type) {x y : A} (p : x ≈ y) (z : P y) :
p # p^ # z ≈ z := p ▹ p⁻¹ ▹ z ≈ z :=
(transport_pp P (p^) p z)^ @ ap (λr, transport P r z) (concat_Vp p) (transport_pp P (p⁻¹) p z)⁻¹ ⬝ ap (λr, transport P r z) (concat_Vp p)
definition transport_Vp {A : Type} (P : A → Type) {x y : A} (p : x ≈ y) (z : P x) : definition transport_Vp {A : Type} (P : A → Type) {x y : A} (p : x ≈ y) (z : P x) :
p^ # p # z ≈ z := p⁻¹ ▹ p ▹ z ≈ z :=
(transport_pp P p (p^) z)^ @ ap (λr, transport P r z) (concat_pV p) (transport_pp P p (p⁻¹) z)⁻¹ ⬝ ap (λr, transport P r z) (concat_pV p)
definition transport_p_pp {A : Type} (P : A → Type) definition transport_p_pp {A : Type} (P : A → Type)
{x y z w : A} (p : x ≈ y) (q : y ≈ z) (r : z ≈ w) (u : P x) : {x y z w : A} (p : x ≈ y) (q : y ≈ z) (r : z ≈ w) (u : P x) :
ap (λe, e # u) (concat_p_pp p q r) @ (transport_pp P (p @ q) r u) @ ap (λe, e ▹ u) (concat_p_pp p q r) ⬝ (transport_pp P (p ⬝ q) r u) ⬝
ap (transport P r) (transport_pp P p q u) ap (transport P r) (transport_pp P p q u)
≈ (transport_pp P p (q @ r) u) @ (transport_pp P q r (p # u)) ≈ (transport_pp P p (q ⬝ r) u) ⬝ (transport_pp P q r (p ▹ u))
:> ((p @ (q @ r)) # u ≈ r # q # p # u) := :> ((p ⬝ (q ⬝ r)) ▹ u ≈ r ▹ q ▹ p ▹ u) :=
induction_on r (induction_on q (induction_on p idp)) induction_on r (induction_on q (induction_on p idp))
-- Here is another coherence lemma for transport. -- Here is another coherence lemma for transport.
@ -413,13 +413,13 @@ induction_on p idp
-- Dependent transport in a doubly dependent type. -- Dependent transport in a doubly dependent type.
definition transportD {A : Type} (B : A → Type) (C : Π a : A, B a → Type) definition transportD {A : Type} (B : A → Type) (C : Π a : A, B a → Type)
{x1 x2 : A} (p : x1 ≈ x2) (y : B x1) (z : C x1 y) : {x1 x2 : A} (p : x1 ≈ x2) (y : B x1) (z : C x1 y) :
C x2 (p # y) := C x2 (p y) :=
induction_on p z induction_on p z
-- Transporting along higher-dimensional paths -- Transporting along higher-dimensional paths
definition transport2 {A : Type} (P : A → Type) {x y : A} {p q : x ≈ y} (r : p ≈ q) (z : P x) : definition transport2 {A : Type} (P : A → Type) {x y : A} {p q : x ≈ y} (r : p ≈ q) (z : P x) :
p # z ≈ q # z := p ▹ z ≈ q ▹ z :=
ap (λp', p' # z) r ap (λp', p' z) r
-- An alternative definition. -- An alternative definition.
definition transport2_is_ap10 {A : Type} (Q : A → Type) {x y : A} {p q : x ≈ y} (r : p ≈ q) definition transport2_is_ap10 {A : Type} (Q : A → Type) {x y : A} {p q : x ≈ y} (r : p ≈ q)
@ -429,21 +429,21 @@ induction_on r idp
definition transport2_p2p {A : Type} (P : A → Type) {x y : A} {p1 p2 p3 : x ≈ y} definition transport2_p2p {A : Type} (P : A → Type) {x y : A} {p1 p2 p3 : x ≈ y}
(r1 : p1 ≈ p2) (r2 : p2 ≈ p3) (z : P x) : (r1 : p1 ≈ p2) (r2 : p2 ≈ p3) (z : P x) :
transport2 P (r1 @ r2) z ≈ transport2 P r1 z @ transport2 P r2 z := transport2 P (r1 ⬝ r2) z ≈ transport2 P r1 z ⬝ transport2 P r2 z :=
induction_on r1 (induction_on r2 idp) induction_on r1 (induction_on r2 idp)
definition transport2_V {A : Type} (Q : A → Type) {x y : A} {p q : x ≈ y} (r : p ≈ q) (z : Q x) : definition transport2_V {A : Type} (Q : A → Type) {x y : A} {p q : x ≈ y} (r : p ≈ q) (z : Q x) :
transport2 Q (r^) z ≈ ((transport2 Q r z)^) := transport2 Q (r⁻¹) z ≈ ((transport2 Q r z)⁻¹) :=
induction_on r idp induction_on r idp
definition concat_AT {A : Type} (P : A → Type) {x y : A} {p q : x ≈ y} {z w : P x} (r : p ≈ q) definition concat_AT {A : Type} (P : A → Type) {x y : A} {p q : x ≈ y} {z w : P x} (r : p ≈ q)
(s : z ≈ w) : (s : z ≈ w) :
ap (transport P p) s @ transport2 P r w ≈ transport2 P r z @ ap (transport P q) s := ap (transport P p) s ⬝ transport2 P r w ≈ transport2 P r z ⬝ ap (transport P q) s :=
induction_on r (concat_p1 _ @ (concat_1p _)^) induction_on r (concat_p1 _ ⬝ (concat_1p _)⁻¹)
-- TODO (from Coq library): What should this be called? -- TODO (from Coq library): What should this be called?
definition ap_transport {A} {P Q : A → Type} {x y : A} (p : x ≈ y) (f : Πx, P x → Q x) (z : P x) : definition ap_transport {A} {P Q : A → Type} {x y : A} (p : x ≈ y) (f : Πx, P x → Q x) (z : P x) :
f y (p # z) ≈ (p # (f x z)) := f y (p ▹ z) ≈ (p ▹ (f x z)) :=
induction_on p idp induction_on p idp
@ -465,8 +465,8 @@ definition transport_const {A B : Type} {x1 x2 : A} (p : x1 ≈ x2) (y : B) :
induction_on p idp induction_on p idp
definition transport2_const {A B : Type} {x1 x2 : A} {p q : x1 ≈ x2} (r : p ≈ q) (y : B) : definition transport2_const {A B : Type} {x1 x2 : A} {p q : x1 ≈ x2} (r : p ≈ q) (y : B) :
transport_const p y ≈ transport2 (λu, B) r y @ transport_const q y := transport_const p y ≈ transport2 (λu, B) r y transport_const q y :=
induction_on r (concat_1p _)^ induction_on r (concat_1p _)⁻¹
-- Transporting in a pulled back fibration. -- Transporting in a pulled back fibration.
definition transport_compose {A B} {x y : A} (P : B → Type) (f : A → B) (p : x ≈ y) (z : P (f x)) : definition transport_compose {A B} {x y : A} (P : B → Type) (f : A → B) (p : x ≈ y) (z : P (f x)) :
@ -496,7 +496,7 @@ induction_on p idp
-- In a constant fibration, [apD] reduces to [ap], modulo [transport_const]. -- In a constant fibration, [apD] reduces to [ap], modulo [transport_const].
definition apD_const {A B} {x y : A} (f : A → B) (p: x ≈ y) : definition apD_const {A B} {x y : A} (f : A → B) (p: x ≈ y) :
apD f p ≈ transport_const p (f x) @ ap f p := apD f p ≈ transport_const p (f x) ap f p :=
induction_on p idp induction_on p idp
@ -505,122 +505,122 @@ induction_on p idp
-- Horizontal composition of 2-dimensional paths. -- Horizontal composition of 2-dimensional paths.
definition concat2 {A} {x y z : A} {p p' : x ≈ y} {q q' : y ≈ z} (h : p ≈ p') (h' : q ≈ q') : definition concat2 {A} {x y z : A} {p p' : x ≈ y} {q q' : y ≈ z} (h : p ≈ p') (h' : q ≈ q') :
p @ q ≈ p' @ q' := p ⬝ q ≈ p' ⬝ q' :=
induction_on h (induction_on h' idp) induction_on h (induction_on h' idp)
infixl `@@`:75 := concat2 infixl ``:75 := concat2
-- 2-dimensional path inversion -- 2-dimensional path inversion
definition inverse2 {A : Type} {x y : A} {p q : x ≈ y} (h : p ≈ q) : p^ ≈ q^ := definition inverse2 {A : Type} {x y : A} {p q : x ≈ y} (h : p ≈ q) : p⁻¹ ≈ q⁻¹ :=
induction_on h idp induction_on h idp
-- Whiskering -- Whiskering
-- ---------- -- ----------
definition whiskerL {A : Type} {x y z : A} (p : x ≈ y) {q r : y ≈ z} (h : q ≈ r) : p @ q ≈ p @ r := definition whiskerL {A : Type} {x y z : A} (p : x ≈ y) {q r : y ≈ z} (h : q ≈ r) : p ⬝ q ≈ p ⬝ r :=
idp @@ h idp h
definition whiskerR {A : Type} {x y z : A} {p q : x ≈ y} (h : p ≈ q) (r : y ≈ z) : p @ r ≈ q @ r := definition whiskerR {A : Type} {x y z : A} {p q : x ≈ y} (h : p ≈ q) (r : y ≈ z) : p ⬝ r ≈ q ⬝ r :=
h @@ idp h idp
-- Unwhiskering, a.k.a. cancelling -- Unwhiskering, a.k.a. cancelling
definition cancelL {A} {x y z : A} (p : x ≈ y) (q r : y ≈ z) : (p @ q ≈ p @ r) → (q ≈ r) := definition cancelL {A} {x y z : A} (p : x ≈ y) (q r : y ≈ z) : (p ⬝ q ≈ p ⬝ r) → (q ≈ r) :=
induction_on p (take r, induction_on r (take q a, (concat_1p q)^ @ a)) r q induction_on p (take r, induction_on r (take q a, (concat_1p q)⁻¹ ⬝ a)) r q
definition cancelR {A} {x y z : A} (p q : x ≈ y) (r : y ≈ z) : (p @ r ≈ q @ r) → (p ≈ q) := definition cancelR {A} {x y z : A} (p q : x ≈ y) (r : y ≈ z) : (p ⬝ r ≈ q ⬝ r) → (p ≈ q) :=
induction_on r (induction_on p (take q a, a @ concat_p1 q)) q induction_on r (induction_on p (take q a, a concat_p1 q)) q
-- Whiskering and identity paths. -- Whiskering and identity paths.
definition whiskerR_p1 {A : Type} {x y : A} {p q : x ≈ y} (h : p ≈ q) : definition whiskerR_p1 {A : Type} {x y : A} {p q : x ≈ y} (h : p ≈ q) :
(concat_p1 p)^ @ whiskerR h idp @ concat_p1 q ≈ h := (concat_p1 p)⁻¹ ⬝ whiskerR h idp ⬝ concat_p1 q ≈ h :=
induction_on h (induction_on p idp) induction_on h (induction_on p idp)
definition whiskerR_1p {A : Type} {x y z : A} (p : x ≈ y) (q : y ≈ z) : definition whiskerR_1p {A : Type} {x y z : A} (p : x ≈ y) (q : y ≈ z) :
whiskerR idp q ≈ idp :> (p @ q ≈ p @ q) := whiskerR idp q ≈ idp :> (p ⬝ q ≈ p ⬝ q) :=
induction_on q idp induction_on q idp
definition whiskerL_p1 {A : Type} {x y z : A} (p : x ≈ y) (q : y ≈ z) : definition whiskerL_p1 {A : Type} {x y z : A} (p : x ≈ y) (q : y ≈ z) :
whiskerL p idp ≈ idp :> (p @ q ≈ p @ q) := whiskerL p idp ≈ idp :> (p ⬝ q ≈ p ⬝ q) :=
induction_on q idp induction_on q idp
definition whiskerL_1p {A : Type} {x y : A} {p q : x ≈ y} (h : p ≈ q) : definition whiskerL_1p {A : Type} {x y : A} {p q : x ≈ y} (h : p ≈ q) :
(concat_1p p) ^ @ whiskerL idp h @ concat_1p q ≈ h := (concat_1p p) ⁻¹ ⬝ whiskerL idp h ⬝ concat_1p q ≈ h :=
induction_on h (induction_on p idp) induction_on h (induction_on p idp)
definition concat2_p1 {A : Type} {x y : A} {p q : x ≈ y} (h : p ≈ q) : definition concat2_p1 {A : Type} {x y : A} {p q : x ≈ y} (h : p ≈ q) :
h @@ idp ≈ whiskerR h idp :> (p @ idp ≈ q @ idp) := h ◾ idp ≈ whiskerR h idp :> (p ⬝ idp ≈ q ⬝ idp) :=
induction_on h idp induction_on h idp
definition concat2_1p {A : Type} {x y : A} {p q : x ≈ y} (h : p ≈ q) : definition concat2_1p {A : Type} {x y : A} {p q : x ≈ y} (h : p ≈ q) :
idp @@ h ≈ whiskerL idp h :> (idp @ p ≈ idp @ q) := idp ◾ h ≈ whiskerL idp h :> (idp ⬝ p ≈ idp ⬝ q) :=
induction_on h idp induction_on h idp
-- TODO: note, 4 inductions -- TODO: note, 4 inductions
-- The interchange law for concatenation. -- The interchange law for concatenation.
definition concat_concat2 {A : Type} {x y z : A} {p p' p'' : x ≈ y} {q q' q'' : y ≈ z} definition concat_concat2 {A : Type} {x y z : A} {p p' p'' : x ≈ y} {q q' q'' : y ≈ z}
(a : p ≈ p') (b : p' ≈ p'') (c : q ≈ q') (d : q' ≈ q'') : (a : p ≈ p') (b : p' ≈ p'') (c : q ≈ q') (d : q' ≈ q'') :
(a @@ c) @ (b @@ d) ≈ (a @ b) @@ (c @ d) := (a ◾ c) ⬝ (b ◾ d) ≈ (a ⬝ b) ◾ (c ⬝ d) :=
induction_on d (induction_on c (induction_on b (induction_on a idp))) induction_on d (induction_on c (induction_on b (induction_on a idp)))
definition concat_whisker {A} {x y z : A} (p p' : x ≈ y) (q q' : y ≈ z) (a : p ≈ p') (b : q ≈ q') : definition concat_whisker {A} {x y z : A} (p p' : x ≈ y) (q q' : y ≈ z) (a : p ≈ p') (b : q ≈ q') :
(whiskerR a q) @ (whiskerL p' b) ≈ (whiskerL p b) @ (whiskerR a q') := (whiskerR a q) ⬝ (whiskerL p' b) ≈ (whiskerL p b) ⬝ (whiskerR a q') :=
induction_on b (induction_on a (concat_1p _)^) induction_on b (induction_on a (concat_1p _)⁻¹)
-- Structure corresponding to the coherence equations of a bicategory. -- Structure corresponding to the coherence equations of a bicategory.
-- The "pentagonator": the 3-cell witnessing the associativity pentagon. -- The "pentagonator": the 3-cell witnessing the associativity pentagon.
definition pentagon {A : Type} {v w x y z : A} (p : v ≈ w) (q : w ≈ x) (r : x ≈ y) (s : y ≈ z) : definition pentagon {A : Type} {v w x y z : A} (p : v ≈ w) (q : w ≈ x) (r : x ≈ y) (s : y ≈ z) :
whiskerL p (concat_p_pp q r s) whiskerL p (concat_p_pp q r s)
@ concat_p_pp p (q @ r) s ⬝ concat_p_pp p (q ⬝ r) s
@ whiskerR (concat_p_pp p q r) s whiskerR (concat_p_pp p q r) s
≈ concat_p_pp p q (r @ s) @ concat_p_pp (p @ q) r s := ≈ concat_p_pp p q (r ⬝ s) ⬝ concat_p_pp (p ⬝ q) r s :=
induction_on s (induction_on r (induction_on q (induction_on p idp))) induction_on s (induction_on r (induction_on q (induction_on p idp)))
-- The 3-cell witnessing the left unit triangle. -- The 3-cell witnessing the left unit triangle.
definition triangulator {A : Type} {x y z : A} (p : x ≈ y) (q : y ≈ z) : definition triangulator {A : Type} {x y z : A} (p : x ≈ y) (q : y ≈ z) :
concat_p_pp p idp q @ whiskerR (concat_p1 p) q ≈ whiskerL p (concat_1p q) := concat_p_pp p idp q whiskerR (concat_p1 p) q ≈ whiskerL p (concat_1p q) :=
induction_on q (induction_on p idp) induction_on q (induction_on p idp)
definition eckmann_hilton {A : Type} {x:A} (p q : idp ≈ idp :> (x ≈ x)) : p @ q ≈ q @ p := definition eckmann_hilton {A : Type} {x:A} (p q : idp ≈ idp :> (x ≈ x)) : p ⬝ q ≈ q ⬝ p :=
(whiskerR_p1 p @@ whiskerL_1p q)^ (!whiskerR_p1 ◾ !whiskerL_1p)⁻¹
@ (concat_p1 _ @@ concat_p1 _) ⬝ (!concat_p1 ◾ !concat_p1)
@ (concat_1p _ @@ concat_1p _) ⬝ (!concat_1p ◾ !concat_1p)
@ (concat_whisker _ _ _ _ p q) ⬝ !concat_whisker
@ (concat_1p _ @@ concat_1p _)^ ⬝ (!concat_1p ◾ !concat_1p)⁻¹
@ (concat_p1 _ @@ concat_p1 _)^ ⬝ (!concat_p1 ◾ !concat_p1)⁻¹
@ (whiskerL_1p q @@ whiskerR_p1 p) ⬝ (!whiskerL_1p ◾ !whiskerR_p1)
-- The action of functions on 2-dimensional paths -- The action of functions on 2-dimensional paths
definition ap02 {A B : Type} (f:A → B) {x y : A} {p q : x ≈ y} (r : p ≈ q) : ap f p ≈ ap f q := definition ap02 {A B : Type} (f:A → B) {x y : A} {p q : x ≈ y} (r : p ≈ q) : ap f p ≈ ap f q :=
induction_on r idp induction_on r idp
definition ap02_pp {A B} (f : A → B) {x y : A} {p p' p'' : x ≈ y} (r : p ≈ p') (r' : p' ≈ p'') : definition ap02_pp {A B} (f : A → B) {x y : A} {p p' p'' : x ≈ y} (r : p ≈ p') (r' : p' ≈ p'') :
ap02 f (r @ r') ≈ ap02 f r @ ap02 f r' := ap02 f (r ⬝ r') ≈ ap02 f r ⬝ ap02 f r' :=
induction_on r (induction_on r' idp) induction_on r (induction_on r' idp)
definition ap02_p2p {A B} (f : A → B) {x y z : A} {p p' : x ≈ y} {q q' :y ≈ z} (r : p ≈ p') definition ap02_p2p {A B} (f : A → B) {x y z : A} {p p' : x ≈ y} {q q' :y ≈ z} (r : p ≈ p')
(s : q ≈ q') : (s : q ≈ q') :
ap02 f (r @@ s) ≈ ap_pp f p q ap02 f (r s) ≈ ap_pp f p q
@ (ap02 f r @@ ap02 f s) ⬝ (ap02 f r ◾ ap02 f s)
@ (ap_pp f p' q')^ := ⬝ (ap_pp f p' q')⁻¹ :=
induction_on r (induction_on s (induction_on q (induction_on p idp))) induction_on r (induction_on s (induction_on q (induction_on p idp)))
-- induction_on r (induction_on s (induction_on p (induction_on q idp))) -- induction_on r (induction_on s (induction_on p (induction_on q idp)))
definition apD02 {A : Type} {B : A → Type} {x y : A} {p q : x ≈ y} (f : Π x, B x) (r : p ≈ q) : definition apD02 {A : Type} {B : A → Type} {x y : A} {p q : x ≈ y} (f : Π x, B x) (r : p ≈ q) :
apD f p ≈ transport2 B r (f x) @ apD f q := apD f p ≈ transport2 B r (f x) apD f q :=
induction_on r (concat_1p _)^ induction_on r (concat_1p _)⁻¹
-- And now for a lemma whose statement is much longer than its proof. -- And now for a lemma whose statement is much longer than its proof.
definition apD02_pp {A} (B : A → Type) (f : Π x:A, B x) {x y : A} definition apD02_pp {A} (B : A → Type) (f : Π x:A, B x) {x y : A}
{p1 p2 p3 : x ≈ y} (r1 : p1 ≈ p2) (r2 : p2 ≈ p3) : {p1 p2 p3 : x ≈ y} (r1 : p1 ≈ p2) (r2 : p2 ≈ p3) :
apD02 f (r1 @ r2) ≈ apD02 f r1 apD02 f (r1 r2) ≈ apD02 f r1
@ whiskerL (transport2 B r1 (f x)) (apD02 f r2) whiskerL (transport2 B r1 (f x)) (apD02 f r2)
@ concat_p_pp _ _ _ concat_p_pp _ _ _
@ (whiskerR ((transport2_p2p B r1 r2 (f x))^) (apD f p3)) := ⬝ (whiskerR ((transport2_p2p B r1 r2 (f x))⁻¹) (apD f p3)) :=
induction_on r2 (induction_on r1 (induction_on p1 idp)) induction_on r2 (induction_on r1 (induction_on p1 idp))
/- From the Coq version: /- From the Coq version:
@ -640,35 +640,35 @@ Hint Resolve
(* First try at a paths db (* First try at a paths db
We want the RHS of the equation to become strictly simpler We want the RHS of the equation to become strictly simpler
Hint Rewrite Hint Rewrite
@concat_p1 concat_p1
@concat_1p concat_1p
@concat_p_pp (* there is a choice here !*) concat_p_pp (* there is a choice here !*)
@concat_pV concat_pV
@concat_Vp concat_Vp
@concat_V_pp concat_V_pp
@concat_p_Vp concat_p_Vp
@concat_pp_V concat_pp_V
@concat_pV_p concat_pV_p
(*@inv_pp*) (* I am not sure about this one (*inv_pp*) (* I am not sure about this one
@inv_V inv_V
@moveR_Mp moveR_Mp
@moveR_pM moveR_pM
@moveL_Mp moveL_Mp
@moveL_pM moveL_pM
@moveL_1M moveL_1M
@moveL_M1 moveL_M1
@moveR_M1 moveR_M1
@moveR_1M moveR_1M
@ap_1 ap_1
(* @ap_pp (* ap_pp
@ap_p_pp ?*) ap_p_pp ?*)
@inverse_ap inverse_ap
@ap_idmap ap_idmap
(* @ap_compose (* ap_compose
@ap_compose'*) ap_compose'*)
@ap_const ap_const
(* Unsure about naturality of [ap], was absent in the old implementation*) (* Unsure about naturality of [ap], was absent in the old implementation*)
@apD10_1 apD10_1
:paths. :paths.
Ltac hott_simpl := Ltac hott_simpl :=