chore(library): minor library changes
This commit is contained in:
parent
98fa04b1ff
commit
e0f1b16604
4 changed files with 25 additions and 31 deletions
|
@ -286,7 +286,7 @@ structure decidable_linear_order [class] (A : Type) extends linear_strong_order_
|
|||
|
||||
section
|
||||
variable [s : decidable_linear_order A]
|
||||
variables {a b c d : A}
|
||||
variables (a b c d : A)
|
||||
include s
|
||||
open decidable
|
||||
|
||||
|
@ -302,6 +302,8 @@ section
|
|||
(assume H2 : b < a, inr (not_le_of_gt H2))
|
||||
(assume H2 : ¬ b < a, inl (le_of_not_gt H2)))
|
||||
|
||||
variables {a b c d}
|
||||
|
||||
definition has_decidable_eq [instance] : decidable (a = b) :=
|
||||
by_cases
|
||||
(assume H : a ≤ b,
|
||||
|
|
|
@ -118,6 +118,7 @@ section
|
|||
include s
|
||||
|
||||
theorem zero_lt_one : 0 < (1:A) := linear_ordered_semiring.zero_lt_one A
|
||||
theorem zero_le_one : 0 ≤ (1:A) := le_of_lt zero_lt_one
|
||||
|
||||
theorem lt_of_mul_lt_mul_left (H : c * a < c * b) (Hc : c ≥ 0) : a < b :=
|
||||
lt_of_not_ge
|
||||
|
@ -394,8 +395,6 @@ section
|
|||
(assume H : a ≥ 0, mul_nonneg H H)
|
||||
(assume H : a ≤ 0, mul_nonneg_of_nonpos_of_nonpos H H)
|
||||
|
||||
theorem zero_le_one : 0 ≤ (1:A) := one_mul 1 ▸ mul_self_nonneg 1
|
||||
|
||||
theorem pos_and_pos_or_neg_and_neg_of_mul_pos {a b : A} (Hab : a * b > 0) :
|
||||
(a > 0 ∧ b > 0) ∨ (a < 0 ∧ b < 0) :=
|
||||
lt.by_cases
|
||||
|
|
|
@ -22,12 +22,12 @@ open tuple
|
|||
definition bv [reducible] (n : ℕ) := tuple bool n
|
||||
|
||||
-- Create a zero bitvector
|
||||
definition bv_zero (n : ℕ) : bv n := replicate ff
|
||||
definition bv_zero (n : ℕ) : bv n := replicate n ff
|
||||
|
||||
-- Create a bitvector with the constant one.
|
||||
definition bv_one : Π (n : ℕ), bv n
|
||||
| 0 := replicate ff
|
||||
| (succ n) := (replicate ff : bv n) ++ (tt :: nil)
|
||||
| 0 := nil
|
||||
| (succ n) := (replicate n ff : bv n) ++ (tt :: nil)
|
||||
|
||||
definition bv_cong {a b : ℕ} : (a = b) → bv a → bv b
|
||||
| c (tag x p) := tag x (c ▸ p)
|
||||
|
@ -38,36 +38,30 @@ section shift
|
|||
definition bv_shl {n:ℕ} : bv n → ℕ → bv n
|
||||
| x i :=
|
||||
if le : i ≤ n then
|
||||
let r := dropn i x ++ replicate ff in
|
||||
let r := dropn i x ++ replicate i ff in
|
||||
let eq := calc (n-i) + i = n : nat.sub_add_cancel le in
|
||||
bv_cong eq r
|
||||
else
|
||||
bv_zero n
|
||||
|
||||
definition fill_shr {n:ℕ} (x : bv n) (i : ℕ) (fill : bool) : bv n :=
|
||||
let y := replicate (min n i) fill ++ firstn (n-i) x in
|
||||
have min n i + min (n-i) n = n, from if h : i ≤ n then
|
||||
by rewrite [min_eq_right h, min_eq_left !sub_le, -nat.add_sub_assoc h,
|
||||
nat.add_sub_cancel_left]
|
||||
else
|
||||
have h : i ≥ n, from le_of_not_ge h,
|
||||
by rewrite [min_eq_left h, sub_eq_zero_of_le h, min_eq_left !zero_le],
|
||||
bv_cong this y
|
||||
|
||||
-- unsigned shift right
|
||||
definition bv_ushr {n:ℕ} : bv n → ℕ → bv n
|
||||
| x i :=
|
||||
if le : i ≤ n then
|
||||
let y : bv (n-i) := @firstn _ _ (n - i) (sub_le n i) x in
|
||||
let eq := calc (i+(n-i)) = (n - i) + i : add.comm
|
||||
... = n : nat.sub_add_cancel le in
|
||||
bv_cong eq (replicate ff ++ y)
|
||||
else
|
||||
bv_zero n
|
||||
fill_shr x i ff
|
||||
|
||||
-- signed shift right
|
||||
definition bv_sshr {m:ℕ} : bv (succ m) → ℕ → bv (succ m)
|
||||
| x i :=
|
||||
let n := succ m in
|
||||
if le : i ≤ n then
|
||||
let z : bv i := replicate (head x) in
|
||||
let y : bv (n-i) := @firstn _ _ (n - i) (sub_le n i) x in
|
||||
let eq := calc (i+(n-i)) = (n-i) + i : add.comm
|
||||
... = n : nat.sub_add_cancel le in
|
||||
bv_cong eq (z ++ y)
|
||||
else
|
||||
bv_zero n
|
||||
|
||||
| x i := head x :: fill_shr (tail x) i (head x)
|
||||
end shift
|
||||
|
||||
section bitwise
|
||||
|
|
|
@ -272,18 +272,17 @@ namespace tuple
|
|||
|
||||
variable {n : ℕ}
|
||||
|
||||
definition replicate : A → tuple A n
|
||||
definition replicate (n : ℕ) : A → tuple A n
|
||||
| a := tag (list.replicate n a) (length_replicate n a)
|
||||
|
||||
definition dropn : Π (i:ℕ), tuple A n → tuple A (n - i)
|
||||
| i (tag l p) := tag (list.dropn i l) (p ▸ list.length_dropn i l)
|
||||
|
||||
definition firstn : Π (i:ℕ) {p:i ≤ n}, tuple A n → tuple A i
|
||||
| i isLe (tag l p) :=
|
||||
definition firstn : Π (i:ℕ), tuple A n → tuple A (min i n)
|
||||
| i (tag l p) :=
|
||||
let q := calc list.length (list.firstn i l)
|
||||
= min i (list.length l) : list.length_firstn_eq
|
||||
... = min i n : p
|
||||
... = i : min_eq_left isLe in
|
||||
... = min i n : p in
|
||||
tag (list.firstn i l) q
|
||||
|
||||
definition map₂ : (A → B → C) → tuple A n → tuple B n → tuple C n
|
||||
|
|
Loading…
Reference in a new issue