feat(library/data/real): prove reals are Cauchy complete

This commit is contained in:
Rob Lewis 2015-06-09 15:39:28 +10:00
parent 3749a8ad04
commit e112468f99
4 changed files with 535 additions and 24 deletions

View file

@ -11,7 +11,7 @@ To do:
o Rename things and possibly make theorems private o Rename things and possibly make theorems private
-/ -/
import algebra.ordered_field data.nat data.rat.order import data.nat data.rat.order
open nat eq eq.ops open nat eq eq.ops
open -[coercions] rat open -[coercions] rat
---------------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------------
@ -46,11 +46,11 @@ notation p `≥` q := q ≤ p
definition lt (p q : pnat) := p~ < q~ definition lt (p q : pnat) := p~ < q~
infix `<` := lt infix `<` := lt
theorem pnat_le_decidable [instance] (p q : pnat) : decidable (p ≤ q) := definition pnat_le_decidable [instance] (p q : pnat) : decidable (p ≤ q) :=
pnat.rec_on p (λ n H, pnat.rec_on q pnat.rec_on p (λ n H, pnat.rec_on q
(λ m H2, if Hl : n ≤ m then decidable.inl Hl else decidable.inr Hl)) (λ m H2, if Hl : n ≤ m then decidable.inl Hl else decidable.inr Hl))
theorem pnat_lt_decidable [instance] {p q : pnat} : decidable (p < q) := definition pnat_lt_decidable [instance] {p q : pnat} : decidable (p < q) :=
pnat.rec_on p (λ n H, pnat.rec_on q pnat.rec_on p (λ n H, pnat.rec_on q
(λ m H2, if Hl : n < m then decidable.inl Hl else decidable.inr Hl)) (λ m H2, if Hl : n < m then decidable.inl Hl else decidable.inr Hl))
@ -126,6 +126,8 @@ theorem ge_of_inv_le {p q : +} (H : p⁻¹ ≤ q⁻¹) : q < p := sorry
theorem padd_halves (p : +) : (2 * p)⁻¹ + (2 * p)⁻¹ = p⁻¹ := sorry theorem padd_halves (p : +) : (2 * p)⁻¹ + (2 * p)⁻¹ = p⁻¹ := sorry
theorem p_add_fractions (n : +) : (2 * n)⁻¹ + (2 * 3 * n)⁻¹ + (3 * n)⁻¹ = n⁻¹ := sorry
theorem add_halves_double (m n : +) : theorem add_halves_double (m n : +) :
m⁻¹ + n⁻¹ = ((2 * m)⁻¹ + (2 * n)⁻¹) + ((2 * m)⁻¹ + (2 * n)⁻¹) := m⁻¹ + n⁻¹ = ((2 * m)⁻¹ + (2 * n)⁻¹) + ((2 * m)⁻¹ + (2 * n)⁻¹) :=
have simp [visible] : ∀ a b : , (a + a) + (b + b) = (a + b) + (a + b), from sorry, have simp [visible] : ∀ a b : , (a + a) + (b + b) = (a + b) + (a + b), from sorry,
@ -150,6 +152,8 @@ theorem pnat_mul_assoc (a b c : +) : a * b * c = a * (b * c) := sorry
theorem pnat_mul_comm (a b : +) : a * b = b * a := sorry theorem pnat_mul_comm (a b : +) : a * b = b * a := sorry
theorem pnat_add_assoc (a b c : +) : a + b + c = a + (b + c) := sorry
theorem s_mul_assoc_lemma_3 (a b n : +) (p : ) : theorem s_mul_assoc_lemma_3 (a b n : +) (p : ) :
p * ((a * n)⁻¹ + (b * n)⁻¹) = p * (a⁻¹ + b⁻¹) * n⁻¹ := sorry p * ((a * n)⁻¹ + (b * n)⁻¹) = p * (a⁻¹ + b⁻¹) * n⁻¹ := sorry

View file

@ -0,0 +1,484 @@
/-
Copyright (c) 2015 Robert Y. Lewis. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Robert Y. Lewis
The real numbers, constructed as equivalence classes of Cauchy sequences of rationals.
This construction follows Bishop and Bridges (1985).
At this point, we no longer proceed constructively: this file makes heavy use of decidability,
excluded middle, and Hilbert choice.
Here, we show that is complete.
-/
import data.real.basic data.real.order data.real.division data.rat data.nat logic.axioms.classical
open -[coercions] rat
open -[coercions] nat
open algebra
open eq.ops
local notation 2 := pnat.pos (nat.of_num 2) dec_trivial
local notation 3 := pnat.pos (nat.of_num 3) dec_trivial
namespace s
theorem nonneg_of_ge_neg_invs (a : ) (H : ∀ n : +, -n⁻¹ ≤ a) : 0 ≤ a := sorry
theorem ineq_helper (a b c : ) : c ≤ a + b → -a ≤ b - c := sorry
definition const (a : ) : seq := λ n, a
theorem const_reg (a : ) : regular (const a) :=
begin
intros,
rewrite [↑const, sub_self, abs_zero],
apply add_invs_nonneg
end
definition r_const (a : ) : reg_seq := reg_seq.mk (const a) (const_reg a)
theorem rat_approx_l1 {s : seq} (H : regular s) :
∀ n : +, ∃ q : , ∃ N : +, ∀ m : +, m ≥ N → abs (s m - q) ≤ n⁻¹ :=
begin
intro n,
existsi (s (2 * n)),
existsi 2 * n,
intro m Hm,
apply rat.le.trans,
apply H,
rewrite -(padd_halves n),
apply rat.add_le_add_right,
apply inv_ge_of_le Hm
end
theorem rat_approx {s : seq} (H : regular s) :
∀ n : +, ∃ q : , s_le (s_abs (sadd s (sneg (const q)))) (const n⁻¹) :=
begin
intro m,
rewrite ↑s_le,
apply exists.elim (rat_approx_l1 H m),
intro q Hq,
apply exists.elim Hq,
intro N HN,
existsi q,
apply nonneg_of_bdd_within,
repeat (apply reg_add_reg | apply reg_neg_reg | apply abs_reg_of_reg | apply const_reg
| assumption),
intro n,
existsi N,
intro p Hp,
rewrite ↑[sadd, sneg, s_abs, const],
apply rat.le.trans,
rotate 1,
apply rat.sub_le_sub_left,
apply HN,
apply ple.trans,
apply Hp,
rewrite -*pnat_mul_assoc,
apply pnat.mul_le_mul_left,
rewrite [sub_self, -neg_zero],
apply neg_le_neg,
apply rat.le_of_lt,
apply inv_pos
end
definition r_abs (s : reg_seq) : reg_seq :=
reg_seq.mk (s_abs (reg_seq.sq s)) (abs_reg_of_reg (reg_seq.is_reg s))
theorem abs_well_defined {s t : seq} (Hs : regular s) (Ht : regular t) (Heq : s ≡ t) :
s_abs s ≡ s_abs t :=
begin
rewrite [↑equiv at *],
intro n,
rewrite ↑s_abs,
apply rat.le.trans,
apply abs_abs_sub_abs_le_abs_sub,
apply Heq
end
theorem r_abs_well_defined {s t : reg_seq} (H : requiv s t) : requiv (r_abs s) (r_abs t) :=
abs_well_defined (reg_seq.is_reg s) (reg_seq.is_reg t) H
theorem r_rat_approx (s : reg_seq) :
∀ n : +, ∃ q : , r_le (r_abs (radd s (rneg (r_const q)))) (r_const n⁻¹) :=
rat_approx (reg_seq.is_reg s)
theorem const_bound {s : seq} (Hs : regular s) (n : +) : s_le (s_abs (sadd s (sneg (const (s n))))) (const n⁻¹) :=
begin
rewrite ↑[s_le, nonneg, s_abs, sadd, sneg, const],
intro m,
apply ineq_helper,
apply rat.le.trans,
apply Hs,
apply rat.add_le_add_right,
rewrite -*pnat_mul_assoc,
apply inv_ge_of_le,
apply pnat.mul_le_mul_left
end
theorem abs_const (a : ) : const (abs a) ≡ s_abs (const a) :=
begin
rewrite [↑s_abs, ↑const],
apply equiv.refl
end
theorem r_abs_const (a : ) : requiv (r_const (abs a) ) (r_abs (r_const a)) := abs_const a
theorem add_consts (a b : ) : sadd (const a) (const b) ≡ const (a + b) :=
begin
rewrite [↑sadd, ↑const],
apply equiv.refl
end
theorem r_add_consts (a b : ) : requiv (r_const a + r_const b) (r_const (a + b)) := add_consts a b
theorem const_le_const_of_le {a b : } (H : a ≤ b) : s_le (const a) (const b) :=
begin
rewrite [↑s_le, ↑nonneg],
intro n,
rewrite [↑sadd, ↑sneg, ↑const],
apply rat.le.trans,
apply rat.neg_nonpos_of_nonneg,
apply rat.le_of_lt,
apply inv_pos,
apply iff.mp' !rat.sub_nonneg_iff_le,
apply H
end
theorem le_of_const_le_const {a b : } (H : s_le (const a) (const b)) : a ≤ b :=
begin
rewrite [↑s_le at H, ↑nonneg at H, ↑sadd at H, ↑sneg at H, ↑const at H],
apply iff.mp !rat.sub_nonneg_iff_le,
apply nonneg_of_ge_neg_invs _ H
end
theorem r_const_le_const_of_le {a b : } (H : a ≤ b) : r_le (r_const a) (r_const b) :=
const_le_const_of_le H
theorem r_le_of_const_le_const {a b : } (H : r_le (r_const a) (r_const b)) : a ≤ b :=
le_of_const_le_const H
theorem equiv_abs_of_ge_zero {s : seq} (Hs : regular s) (Hz : s_le zero s) : s_abs s ≡ s :=
begin
apply eq_of_bdd,
apply abs_reg_of_reg Hs,
apply Hs,
intro j,
rewrite ↑s_abs,
let Hz' := s_nonneg_of_ge_zero Hs Hz,
existsi 2 * j,
intro n Hn,
apply or.elim (decidable.em (s n ≥ 0)),
intro Hpos,
rewrite [rat.abs_of_nonneg Hpos, sub_self, abs_zero],
apply rat.le_of_lt,
apply inv_pos,
intro Hneg,
let Hneg' := lt_of_not_ge Hneg,
have Hsn : -s n - s n > 0, from add_pos (neg_pos_of_neg Hneg') (neg_pos_of_neg Hneg'),
rewrite [rat.abs_of_neg Hneg', rat.abs_of_pos Hsn],
apply rat.le.trans,
apply rat.add_le_add,
repeat (apply rat.neg_le_neg; apply Hz'),
rewrite *rat.neg_neg,
apply rat.le.trans,
apply rat.add_le_add,
repeat (apply inv_ge_of_le; apply Hn),
rewrite padd_halves,
apply rat.le.refl
end
theorem equiv_neg_abs_of_le_zero {s : seq} (Hs : regular s) (Hz : s_le s zero) : s_abs s ≡ sneg s :=
begin
apply eq_of_bdd,
apply abs_reg_of_reg Hs,
apply reg_neg_reg Hs,
intro j,
rewrite [↑s_abs, ↑s_le at Hz],
have Hz' : nonneg (sneg s), begin
apply nonneg_of_nonneg_equiv,
rotate 3,
apply Hz,
rotate 2,
apply s_zero_add,
repeat (apply Hs | apply zero_is_reg | apply reg_neg_reg | apply reg_add_reg)
end,
existsi 2 * j,
intro n Hn,
apply or.elim (decidable.em (s n ≥ 0)),
intro Hpos,
have Hsn : s n + s n ≥ 0, from add_nonneg Hpos Hpos,
rewrite [rat.abs_of_nonneg Hpos, ↑sneg, rat.sub_neg_eq_add, rat.abs_of_nonneg Hsn],
rewrite [↑nonneg at Hz', ↑sneg at Hz'],
apply rat.le.trans,
apply rat.add_le_add,
repeat apply (rat.le_of_neg_le_neg !Hz'),
apply rat.le.trans,
apply rat.add_le_add,
repeat (apply inv_ge_of_le; apply Hn),
rewrite padd_halves,
apply rat.le.refl,
intro Hneg,
let Hneg' := lt_of_not_ge Hneg,
rewrite [rat.abs_of_neg Hneg', ↑sneg, rat.sub_neg_eq_add, rat.neg_add_eq_sub, rat.sub_self,
abs_zero],
apply rat.le_of_lt,
apply inv_pos
end
theorem r_equiv_abs_of_ge_zero {s : reg_seq} (Hz : r_le r_zero s) : requiv (r_abs s) s :=
equiv_abs_of_ge_zero (reg_seq.is_reg s) Hz
theorem r_equiv_neg_abs_of_le_zero {s : reg_seq} (Hz : r_le s r_zero) : requiv (r_abs s) (-s) :=
equiv_neg_abs_of_le_zero (reg_seq.is_reg s) Hz
end s
namespace real
theorem rewrite_helper9 (a b c : ) : b - c = (b - a) - (c - a) := sorry
theorem rewrite_helper10 (a b c d : ) : c - d = (c - a) + (a - b) + (b - d) := sorry
theorem r_abs_add_three (a b c : ) : abs (a + b + c) ≤ abs a + abs b + abs c :=
begin
apply algebra.le.trans,
apply algebra.abs_add_le_abs_add_abs,
apply algebra.le.trans,
apply algebra.add_le_add_right,
apply algebra.abs_add_le_abs_add_abs,
apply algebra.le.refl
end
theorem r_add_le_add_three (a b c d e f : ) (H1 : a ≤ d) (H2 : b ≤ e) (H3 : c ≤ f) :
a + b + c ≤ d + e + f :=
begin
apply algebra.le.trans,
apply algebra.add_le_add,
apply algebra.add_le_add,
repeat assumption,
apply algebra.le.refl
end
theorem re_add_comm_3 (a b c : ) : a + b + c = c + b + a := sorry
definition rep (x : ) : reg_seq := some (quot.exists_rep x)
definition const (a : ) : := quot.mk (s.r_const a)
theorem add_consts (a b : ) : const a + const b = const (a + b) :=
quot.sound (s.r_add_consts a b)
theorem sub_consts (a b : ) : const a - const b = const (a - b) := !add_consts
theorem add_half_const (n : +) : const (2 * n)⁻¹ + const (2 * n)⁻¹ = const (n⁻¹) :=
by rewrite [add_consts, padd_halves]
theorem const_le_const_of_le (a b : ) : a ≤ b → const a ≤ const b :=
s.r_const_le_const_of_le
theorem le_of_const_le_const (a b : ) : const a ≤ const b → a ≤ b :=
s.r_le_of_const_le_const
definition re_abs (x : ) : :=
quot.lift_on x (λ a, quot.mk (s.r_abs a)) (take a b Hab, quot.sound (s.r_abs_well_defined Hab))
theorem r_abs_nonneg {x : } : 0 ≤ x → re_abs x = x :=
quot.induction_on x (λ a Ha, quot.sound (s.r_equiv_abs_of_ge_zero Ha))
theorem r_abs_nonpos {x : } : x ≤ 0 → re_abs x = -x :=
quot.induction_on x (λ a Ha, quot.sound (s.r_equiv_neg_abs_of_le_zero Ha))
theorem abs_const' (a : ) : const (rat.abs a) = re_abs (const a) := quot.sound (s.r_abs_const a)
theorem re_abs_is_abs : re_abs = algebra.abs := funext
(begin
intro x,
rewrite ↑abs,
apply eq.symm,
let Hor := decidable.em (0 ≤ x),
apply or.elim Hor,
intro Hor1,
rewrite [(if_pos Hor1), r_abs_nonneg Hor1],
intro Hor2,
let Hor2' := algebra.le_of_lt (algebra.lt_of_not_ge Hor2),
rewrite [(if_neg Hor2), r_abs_nonpos Hor2']
end)
theorem abs_const (a : ) : const (rat.abs a) = abs (const a) :=
by rewrite -re_abs_is_abs -- ????
theorem rat_approx' (x : ) : ∀ n : +, ∃ q : , re_abs (x - const q) ≤ const n⁻¹ :=
quot.induction_on x (λ s n, s.r_rat_approx s n)
theorem rat_approx (x : ) : ∀ n : +, ∃ q : , abs (x - const q) ≤ const n⁻¹ :=
by rewrite -re_abs_is_abs; apply rat_approx'
definition approx (x : ) (n : +) := some (rat_approx x n)
theorem approx_spec (x : ) (n : +) : abs (x - (const (approx x n))) ≤ const n⁻¹ :=
some_spec (rat_approx x n)
theorem approx_spec' (x : ) (n : +) : abs ((const (approx x n)) - x) ≤ const n⁻¹ :=
by rewrite algebra.abs_sub; apply approx_spec
notation `r_seq` := + →
definition converges_to (X : r_seq) (a : ) (N : + → +) :=
∀ k : +, ∀ n : +, n ≥ N k → abs (X n - a) ≤ const k⁻¹
definition cauchy (X : r_seq) (M : + → +) :=
∀ k : +, ∀ m n : +, m ≥ M k → n ≥ M k → abs (X m - X n) ≤ const k⁻¹
theorem cauchy_of_converges_to {X : r_seq} {a : } {N : + → +} (Hc : converges_to X a N) :
cauchy X (λ k, N (2 * k)) :=
begin
intro k m n Hm Hn,
rewrite (rewrite_helper9 a),
apply algebra.le.trans,
apply algebra.abs_add_le_abs_add_abs,
apply algebra.le.trans,
apply algebra.add_le_add,
apply Hc,
apply Hm,
rewrite algebra.abs_neg,
apply Hc,
apply Hn,
rewrite add_half_const,
apply !algebra.le.refl
end
definition Nb (M : + → +) := λ k, max (3 * k) (M (2 * k))
theorem Nb_spec_right (M : + → +) (k : +) : M (2 * k) ≤ Nb M k := !max_right
theorem Nb_spec_left (M : + → +) (k : +) : 3 * k ≤ Nb M k := !max_left
definition lim_seq {X : r_seq} {M : + → +} (Hc : cauchy X M) : seq :=
λ k, approx (X (Nb M k)) (2 * k)
theorem lim_seq_reg_helper {X : r_seq} {M : + → +} (Hc : cauchy X M) {m n : +}
(Hmn : M (2 * n) ≤M (2 * m)) :
abs (const (lim_seq Hc m) - X (Nb M m)) + abs (X (Nb M m) - X (Nb M n)) + abs
(X (Nb M n) - const (lim_seq Hc n)) ≤ const (m⁻¹ + n⁻¹) :=
begin
apply algebra.le.trans,
apply r_add_le_add_three,
apply approx_spec',
rotate 1,
apply approx_spec,
rotate 1,
apply Hc,
rotate 1,
apply Nb_spec_right,
rotate 1,
apply ple.trans,
apply Hmn,
apply Nb_spec_right,
rewrite [*add_consts, rat.add.assoc, padd_halves],
apply const_le_const_of_le,
apply rat.add_le_add_right,
apply inv_ge_of_le,
apply pnat.mul_le_mul_left
end
theorem lim_seq_reg {X : r_seq} {M : + → +} (Hc : cauchy X M) : regular (lim_seq Hc) :=
begin
rewrite ↑regular,
intro m n,
apply le_of_const_le_const,
rewrite [abs_const, -sub_consts, (rewrite_helper10 (X (Nb M m)) (X (Nb M n)))],
apply algebra.le.trans,
apply r_abs_add_three,
let Hor := decidable.em (M (2 * m) ≥ M (2 * n)),
apply or.elim Hor,
intro Hor1,
apply lim_seq_reg_helper Hc Hor1,
intro Hor2,
let Hor2' := pnat.le_of_lt (pnat.lt_of_not_le Hor2),
rewrite [algebra.abs_sub (X (Nb M n)), algebra.abs_sub (X (Nb M m)), algebra.abs_sub, -- ???
rat.add.comm, re_add_comm_3],
apply lim_seq_reg_helper Hc Hor2'
end
theorem lim_seq_spec {X : r_seq} {M : + → +} (Hc : cauchy X M) (k : +) :
s.s_le (s.s_abs (sadd (lim_seq Hc) (sneg (s.const (lim_seq Hc k))) )) (s.const k⁻¹) :=
begin
apply s.const_bound,
apply lim_seq_reg
end
definition r_lim_seq {X : r_seq} {M : + → +} (Hc : cauchy X M) : reg_seq :=
reg_seq.mk (lim_seq Hc) (lim_seq_reg Hc)
theorem r_lim_seq_spec {X : r_seq} {M : + → +} (Hc : cauchy X M) (k : +) :
s.r_le (s.r_abs (((r_lim_seq Hc) + -s.r_const ((reg_seq.sq (r_lim_seq Hc)) k)))) (s.r_const (k)⁻¹) :=
lim_seq_spec Hc k
definition lim {X : r_seq} {M : + → +} (Hc : cauchy X M) : :=
quot.mk (r_lim_seq Hc)
theorem re_lim_spec {x : r_seq} {M : + → +} (Hc : cauchy x M) (k : +) :
re_abs ((lim Hc) - (const ((lim_seq Hc) k))) ≤ const k⁻¹ :=
r_lim_seq_spec Hc k
theorem lim_spec' {x : r_seq} {M : + → +} (Hc : cauchy x M) (k : +) :
abs ((lim Hc) - (const ((lim_seq Hc) k))) ≤ const k⁻¹ :=
by rewrite -re_abs_is_abs; apply re_lim_spec
theorem lim_spec {x : r_seq} {M : + → +} (Hc : cauchy x M) (k : +) :
abs ((const ((lim_seq Hc) k)) - (lim Hc)) ≤ const (k)⁻¹ :=
by rewrite algebra.abs_sub; apply lim_spec'
theorem converges_of_cauchy {X : r_seq} {M : + → +} (Hc : cauchy X M) :
converges_to X (lim Hc) (Nb M) :=
begin
intro k n Hn,
rewrite (rewrite_helper10 (X (Nb M n)) (const (lim_seq Hc n))),
apply algebra.le.trans,
apply r_abs_add_three,
apply algebra.le.trans,
apply r_add_le_add_three,
apply Hc,
apply ple.trans,
rotate 1,
apply Hn,
rotate_right 1,
apply Nb_spec_right,
have HMk : M (2 * k) ≤ Nb M n, begin
apply ple.trans,
apply Nb_spec_right,
apply ple.trans,
apply Hn,
apply ple.trans,
apply pnat.mul_le_mul_left 3,
apply Nb_spec_left
end,
apply HMk,
rewrite ↑lim_seq,
apply approx_spec,
apply lim_spec,
rewrite 2 add_consts,
apply const_le_const_of_le,
apply rat.le.trans,
apply add_le_add_three,
apply rat.le.refl,
apply inv_ge_of_le,
apply pnat_mul_le_mul_left',
apply ple.trans,
rotate 1,
apply Hn,
rotate_right 1,
apply Nb_spec_left,
apply inv_ge_of_le,
apply ple.trans,
rotate 1,
apply Hn,
rotate_right 1,
apply Nb_spec_left,
rewrite [-*pnat_mul_assoc, p_add_fractions],
apply rat.le.refl
end
end real

View file

@ -568,6 +568,33 @@ theorem lt_or_equiv_of_le {s t : seq} (Hs : regular s) (Ht : regular t) (Hle : s
if H : s ≡ t then or.inr H else if H : s ≡ t then or.inr H else
or.inl (lt_of_le_and_sep Hs Ht (and.intro Hle (sep_of_nequiv Hs Ht H))) or.inl (lt_of_le_and_sep Hs Ht (and.intro Hle (sep_of_nequiv Hs Ht H)))
theorem s_le_of_equiv_le_left {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u)
(Heq : s ≡ t) (Hle : s_le s u) : s_le t u :=
begin
rewrite ↑s_le at *,
apply nonneg_of_nonneg_equiv,
rotate 2,
apply add_well_defined,
rotate 4,
apply equiv.refl,
apply neg_well_defined,
apply Heq,
repeat (assumption | apply reg_add_reg | apply reg_neg_reg)
end
theorem s_le_of_equiv_le_right {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u)
(Heq : t ≡ u) (Hle : s_le s t) : s_le s u :=
begin
rewrite ↑s_le at *,
apply nonneg_of_nonneg_equiv,
rotate 2,
apply add_well_defined,
rotate 4,
apply Heq,
apply equiv.refl,
repeat (assumption | apply reg_add_reg | apply reg_neg_reg)
end
----------------------------- -----------------------------
definition r_inv (s : reg_seq) : reg_seq := reg_seq.mk (s_inv (reg_seq.is_reg s)) definition r_inv (s : reg_seq) : reg_seq := reg_seq.mk (s_inv (reg_seq.is_reg s))
@ -593,6 +620,11 @@ theorem r_sep_of_nequiv (s t : reg_seq) (Hneq : ¬ requiv s t) : r_sep s t :=
theorem r_lt_or_equiv_of_le (s t : reg_seq) (Hle : r_le s t) : r_lt s t requiv s t := theorem r_lt_or_equiv_of_le (s t : reg_seq) (Hle : r_le s t) : r_lt s t requiv s t :=
lt_or_equiv_of_le (reg_seq.is_reg s) (reg_seq.is_reg t) Hle lt_or_equiv_of_le (reg_seq.is_reg s) (reg_seq.is_reg t) Hle
theorem r_le_of_equiv_le_left {s t u : reg_seq} (Heq : requiv s t) (Hle : r_le s u) : r_le t u :=
s_le_of_equiv_le_left (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) Heq Hle
theorem r_le_of_equiv_le_right {s t u : reg_seq} (Heq : requiv t u) (Hle : r_le s t) : r_le s u :=
s_le_of_equiv_le_right (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) Heq Hle
end s end s
@ -642,7 +674,8 @@ theorem dec_lt : decidable_rel lt :=
apply prop_decidable apply prop_decidable
end end
definition linear_ordered_field : algebra.discrete_linear_ordered_field := open [classes] algebra
definition linear_ordered_field [instance] : algebra.discrete_linear_ordered_field :=
⦃ algebra.discrete_linear_ordered_field, comm_ring, ordered_ring, ⦃ algebra.discrete_linear_ordered_field, comm_ring, ordered_ring,
le_total := le_total, le_total := le_total,
mul_inv_cancel := mul_inv, mul_inv_cancel := mul_inv,

View file

@ -53,8 +53,7 @@ theorem bdd_away_of_pos {s : seq} (Hs : regular s) (H : pos s) :
let Em := sep_by_inv Hn, let Em := sep_by_inv Hn,
apply exists.elim Em, apply exists.elim Em,
intro N HN, intro N HN,
fapply exists.intro, existsi N,
exact N,
intro m Hm, intro m Hm,
have Habs : abs (s m - s n) ≥ s n - s m, by rewrite abs_sub; apply le_abs_self, have Habs : abs (s m - s n) ≥ s n - s m, by rewrite abs_sub; apply le_abs_self,
have Habs' : s m + abs (s m - s n) ≥ s n, from (iff.mp' (le_add_iff_sub_left_le _ _ _)) Habs, have Habs' : s m + abs (s m - s n) ≥ s n, from (iff.mp' (le_add_iff_sub_left_le _ _ _)) Habs,
@ -80,8 +79,7 @@ theorem pos_of_bdd_away {s : seq} (H : ∃ N : +, ∀ n : +, n ≥ N → (
rewrite ↑pos, rewrite ↑pos,
apply exists.elim H, apply exists.elim H,
intro N HN, intro N HN,
fapply exists.intro, existsi (N + pone),
exact (N + pone),
apply lt_of_lt_of_le, apply lt_of_lt_of_le,
apply inv_add_lt_left, apply inv_add_lt_left,
apply HN, apply HN,
@ -93,8 +91,7 @@ theorem bdd_within_of_nonneg {s : seq} (Hs : regular s) (H : nonneg s) :
∀ n : +, ∃ N : +, ∀ m : +, m ≥ N → s m ≥ -n⁻¹ := ∀ n : +, ∃ N : +, ∀ m : +, m ≥ N → s m ≥ -n⁻¹ :=
begin begin
intros, intros,
fapply exists.intro, existsi n,
exact n,
intro m Hm, intro m Hm,
rewrite ↑nonneg at H, rewrite ↑nonneg at H,
apply le.trans, apply le.trans,
@ -149,8 +146,7 @@ theorem pos_of_pos_equiv {s t : seq} (Hs : regular s) (Heq : s ≡ t) (Hp : pos
rewrite [↑pos at *], rewrite [↑pos at *],
apply exists.elim (bdd_away_of_pos Hs Hp), apply exists.elim (bdd_away_of_pos Hs Hp),
intro N HN, intro N HN,
fapply exists.intro, existsi 2 * 2 * N,
exact 2 * 2 * N,
apply lt_of_lt_of_le, apply lt_of_lt_of_le,
rotate 1, rotate 1,
apply ge_sub_of_abs_sub_le_right, apply ge_sub_of_abs_sub_le_right,
@ -174,8 +170,7 @@ theorem nonneg_of_nonneg_equiv {s t : seq} (Hs : regular s) (Ht : regular t) (He
let Bd := (bdd_within_of_nonneg Hs Hp) (2 * 2 * n), let Bd := (bdd_within_of_nonneg Hs Hp) (2 * 2 * n),
apply exists.elim Bd, apply exists.elim Bd,
intro Ns HNs, intro Ns HNs,
fapply exists.intro, existsi max Ns (2 * 2 * n),
exact max Ns (2 * 2 * n),
intro m Hm, intro m Hm,
apply le.trans, apply le.trans,
rotate 1, rotate 1,
@ -223,8 +218,7 @@ theorem zero_nonneg : nonneg zero :=
theorem s_zero_lt_one : s_lt zero one := theorem s_zero_lt_one : s_lt zero one :=
begin begin
rewrite [↑s_lt, ↑zero, ↑sadd, ↑sneg, ↑one, neg_zero, add_zero, ↑pos], rewrite [↑s_lt, ↑zero, ↑sadd, ↑sneg, ↑one, neg_zero, add_zero, ↑pos],
fapply exists.intro, existsi 2,
exact 2,
apply inv_lt_one_of_gt, apply inv_lt_one_of_gt,
apply one_lt_two apply one_lt_two
end end
@ -248,8 +242,7 @@ theorem s_nonneg_of_pos {s : seq} (Hs : regular s) (H : pos s) : nonneg s :=
let Bt := bdd_away_of_pos Hs H, let Bt := bdd_away_of_pos Hs H,
apply exists.elim Bt, apply exists.elim Bt,
intro N HN, intro N HN,
fapply exists.intro, existsi N,
exact N,
intro m Hm, intro m Hm,
apply le.trans, apply le.trans,
rotate 1, rotate 1,
@ -533,8 +526,7 @@ theorem s_mul_pos_of_pos {s t : seq} (Hs : regular s) (Ht : regular t) (Hps : po
intros Ns HNs, intros Ns HNs,
apply exists.elim (bdd_away_of_pos Ht Hpt), apply exists.elim (bdd_away_of_pos Ht Hpt),
intros Nt HNt, intros Nt HNt,
fapply exists.intro, existsi 2 * max Ns Nt * max Ns Nt,
exact 2 * max Ns Nt * max Ns Nt,
rewrite ↑smul, rewrite ↑smul,
apply lt_of_lt_of_le, apply lt_of_lt_of_le,
rotate 1, rotate 1,
@ -835,8 +827,7 @@ theorem s_lt_of_lt_of_le {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : r
apply exists.elim (bdd_within_of_nonneg Runt Htu (2 * Nt)), apply exists.elim (bdd_within_of_nonneg Runt Htu (2 * Nt)),
intro Nu HNu, intro Nu HNu,
apply pos_of_bdd_away, apply pos_of_bdd_away,
fapply exists.intro, existsi max (2 * Nt) Nu,
exact max (2 * Nt) Nu,
intro n Hn, intro n Hn,
rewrite Hcan, rewrite Hcan,
apply rat.le.trans, apply rat.le.trans,
@ -876,8 +867,7 @@ theorem s_lt_of_le_of_lt {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : r
apply exists.elim (bdd_within_of_nonneg Rtns Hst (2 * Nu)), apply exists.elim (bdd_within_of_nonneg Rtns Hst (2 * Nu)),
intro Nt HNt, intro Nt HNt,
apply pos_of_bdd_away, apply pos_of_bdd_away,
fapply exists.intro, existsi max (2 * Nu) Nt,
exact max (2 * Nu) Nt,
intro n Hn, intro n Hn,
rewrite Hcan, rewrite Hcan,
apply rat.le.trans, apply rat.le.trans,