feat(hott/init): define num.sub in the HoTT library

This commit is contained in:
Leonardo de Moura 2015-03-03 16:22:59 -08:00
parent 18e6e55fc9
commit e40e2f0677

View file

@ -5,7 +5,6 @@ Released under Apache 2.0 license as described in the file LICENSE.
Module: init.num Module: init.num
Authors: Leonardo de Moura Authors: Leonardo de Moura
-/ -/
prelude prelude
import init.logic init.bool import init.logic init.bool
open bool open bool
@ -46,6 +45,28 @@ namespace pos_num
notation a * b := mul a b notation a * b := mul a b
definition lt (a b : pos_num) : bool :=
pos_num.rec_on a
(λ b, pos_num.cases_on b
ff
(λm, tt)
(λm, tt))
(λn f b, pos_num.cases_on b
ff
(λm, f m)
(λm, f m))
(λn f b, pos_num.cases_on b
ff
(λm, f (succ m))
(λm, f m))
b
definition le (a b : pos_num) : bool :=
lt a (succ b)
definition equal (a b : pos_num) : bool :=
le a b && le b a
end pos_num end pos_num
definition num.is_inhabited [instance] : inhabited num := definition num.is_inhabited [instance] : inhabited num :=
@ -53,6 +74,7 @@ inhabited.mk num.zero
namespace num namespace num
open pos_num open pos_num
definition pred (a : num) : num := definition pred (a : num) : num :=
num.rec_on a zero (λp, cond (is_one p) zero (pos (pred p))) num.rec_on a zero (λp, cond (is_one p) zero (pos (pred p)))
@ -60,23 +82,49 @@ namespace num
num.rec_on a (pos one) (λp, pos (size p)) num.rec_on a (pos one) (λp, pos (size p))
definition add (a b : num) : num := definition add (a b : num) : num :=
num.rec_on a b (λp_a, num.rec_on b (pos p_a) (λp_b, pos (pos_num.add p_a p_b))) num.rec_on a b (λpa, num.rec_on b (pos pa) (λpb, pos (pos_num.add pa pb)))
definition mul (a b : num) : num := definition mul (a b : num) : num :=
num.rec_on a zero (λp_a, num.rec_on b zero (λp_b, pos (pos_num.mul p_a p_b))) num.rec_on a zero (λpa, num.rec_on b zero (λpb, pos (pos_num.mul pa pb)))
notation a + b := add a b notation a + b := add a b
notation a * b := mul a b notation a * b := mul a b
definition le (a b : num) : bool :=
num.rec_on a tt (λpa, num.rec_on b ff (λpb, pos_num.le pa pb))
private definition psub (a b : pos_num) : num :=
pos_num.rec_on a
(λb, zero)
(λn f b,
cond (pos_num.le (bit1 n) b)
zero
(pos_num.cases_on b
(pos (bit0 n))
(λm, 2 * f m)
(λm, 2 * f m + 1)))
(λn f b,
cond (pos_num.le (bit0 n) b)
zero
(pos_num.cases_on b
(pos (pos_num.pred (bit0 n)))
(λm, pred (2 * f m))
(λm, 2 * f m)))
b
definition sub (a b : num) : num :=
num.rec_on a zero (λpa, num.rec_on b a (λpb, psub pa pb))
notation a ≤ b := le a b
notation a - b := sub a b
end num end num
-- the coercion from num to nat is defined here, so that it can already be used in init.trunc --- the coercion from num to nat is defined here, so that it can already be used in init.trunc
namespace nat namespace nat
definition add (a b : nat) : nat := definition add (a b : nat) : nat :=
nat.rec_on b a (λ b₁ r, succ r) nat.rec_on b a (λ b₁ r, succ r)
notation a + b := add a b notation a + b := add a b
definition of_num [coercion] (n : num) : nat := definition of_num [coercion] (n : num) : nat :=
num.rec zero num.rec zero
(λ n, pos_num.rec (succ zero) (λ n r, r + r + (succ zero)) (λ n r, r + r) n) n (λ n, pos_num.rec (succ zero) (λ n r, r + r + (succ zero)) (λ n r, r + r) n) n