fix(library/hott) close gaps and clean up adjointification proof

This commit is contained in:
Jakob von Raumer 2014-10-24 18:48:11 -04:00 committed by Leonardo de Moura
parent 16a0e970f7
commit e7aa5f65e7

View file

@ -105,7 +105,7 @@ namespace IsEquiv
from calc ap f secta ⬝ ff'a from calc ap f secta ⬝ ff'a
≈ retrfa ⬝ ff'a : (ap _ (adj Hf _ ))⁻¹ ≈ retrfa ⬝ ff'a : (ap _ (adj Hf _ ))⁻¹
... ≈ ap (f ∘ invf) ff'a ⬝ retrf'a : !concat_A1p⁻¹ ... ≈ ap (f ∘ invf) ff'a ⬝ retrf'a : !concat_A1p⁻¹
... ≈ ap f (ap invf ff'a) ⬝ retr Hf (f' a) : {ap_compose invf f ff'a}, ... ≈ ap f (ap invf ff'a) ⬝ retr Hf (f' a) : {ap_compose invf f _},
have eq2 : _ ≈ _, have eq2 : _ ≈ _,
from calc retrf'a from calc retrf'a
≈ (ap f (ap invf ff'a))⁻¹ ⬝ (ap f secta ⬝ ff'a) : moveL_Vp _ _ _ (eq1⁻¹) ≈ (ap f (ap invf ff'a))⁻¹ ⬝ (ap f secta ⬝ ff'a) : moveL_Vp _ _ _ (eq1⁻¹)
@ -205,7 +205,7 @@ definition adjointify : IsEquiv f :=
≈ idp ⬝ ap f (sect a) : !concat_1p⁻¹ ≈ idp ⬝ ap f (sect a) : !concat_1p⁻¹
... ≈ (retr (f a) ⬝ (retr (f a)⁻¹)) ⬝ ap f (sect a) : {!concat_pV⁻¹} ... ≈ (retr (f a) ⬝ (retr (f a)⁻¹)) ⬝ ap f (sect a) : {!concat_pV⁻¹}
... ≈ ((retr (fgfa))⁻¹ ⬝ ap (f ∘ g) (retr (f a))) ⬝ ap f (sect a) : {!concat_pA1⁻¹} ... ≈ ((retr (fgfa))⁻¹ ⬝ ap (f ∘ g) (retr (f a))) ⬝ ap f (sect a) : {!concat_pA1⁻¹}
... ≈ ((retr (fgfa))⁻¹ ⬝ fgretrfa) ⬝ ap f (sect a) : sorry --{!ap_compose⁻¹}, ... ≈ ((retr (fgfa))⁻¹ ⬝ fgretrfa) ⬝ ap f (sect a) : {ap_compose g f _}
... ≈ (retr (fgfa))⁻¹ ⬝ (fgretrfa ⬝ ap f (sect a)) : !concat_pp_p, ... ≈ (retr (fgfa))⁻¹ ⬝ (fgretrfa ⬝ ap f (sect a)) : !concat_pp_p,
have eq2 : ap f (sect a) ⬝ idp ≈ (retr (fgfa))⁻¹ ⬝ (fgretrfa ⬝ ap f (sect a)), have eq2 : ap f (sect a) ⬝ idp ≈ (retr (fgfa))⁻¹ ⬝ (fgretrfa ⬝ ap f (sect a)),
from !concat_p1 ▹ eq1, from !concat_p1 ▹ eq1,
@ -216,7 +216,7 @@ definition adjointify : IsEquiv f :=
... ≈ (ap f ((sect a)⁻¹) ⬝ (retr (fgfa))⁻¹) ⬝ (fgretrfa ⬝ ap f (sect a)) : {!ap_V⁻¹} ... ≈ (ap f ((sect a)⁻¹) ⬝ (retr (fgfa))⁻¹) ⬝ (fgretrfa ⬝ ap f (sect a)) : {!ap_V⁻¹}
... ≈ ((ap f ((sect a)⁻¹) ⬝ (retr (fgfa))⁻¹) ⬝ fgretrfa) ⬝ ap f (sect a) : !concat_p_pp ... ≈ ((ap f ((sect a)⁻¹) ⬝ (retr (fgfa))⁻¹) ⬝ fgretrfa) ⬝ ap f (sect a) : !concat_p_pp
... ≈ ((retrfa⁻¹ ⬝ ap (f ∘ g) (ap f ((sect a)⁻¹))) ⬝ fgretrfa) ⬝ ap f (sect a) : {!concat_pA1⁻¹} ... ≈ ((retrfa⁻¹ ⬝ ap (f ∘ g) (ap f ((sect a)⁻¹))) ⬝ fgretrfa) ⬝ ap f (sect a) : {!concat_pA1⁻¹}
... ≈ ((retrfa⁻¹ ⬝ fgfinvsect) ⬝ fgretrfa) ⬝ ap f (sect a) : sorry --{!ap_compose⁻¹} ... ≈ ((retrfa⁻¹ ⬝ fgfinvsect) ⬝ fgretrfa) ⬝ ap f (sect a) : {ap_compose g f _}
... ≈ (retrfa⁻¹ ⬝ (fgfinvsect ⬝ fgretrfa)) ⬝ ap f (sect a) : {!concat_p_pp⁻¹} ... ≈ (retrfa⁻¹ ⬝ (fgfinvsect ⬝ fgretrfa)) ⬝ ap f (sect a) : {!concat_p_pp⁻¹}
... ≈ retrfa⁻¹ ⬝ ap f (ap g (ap f ((sect a)⁻¹)) ⬝ ap g (retr (f a))) ⬝ ap f (sect a) : {!ap_pp⁻¹} ... ≈ retrfa⁻¹ ⬝ ap f (ap g (ap f ((sect a)⁻¹)) ⬝ ap g (retr (f a))) ⬝ ap f (sect a) : {!ap_pp⁻¹}
... ≈ retrfa⁻¹ ⬝ (ap f (ap g (ap f ((sect a)⁻¹)) ⬝ ap g (retr (f a))) ⬝ ap f (sect a)) : !concat_p_pp⁻¹ ... ≈ retrfa⁻¹ ⬝ (ap f (ap g (ap f ((sect a)⁻¹)) ⬝ ap g (retr (f a))) ⬝ ap f (sect a)) : !concat_p_pp⁻¹