feat(library/data/set): use Prop instead of bool when defining set
This commit is contained in:
parent
25df44ea43
commit
e8ef1f97b6
1 changed files with 73 additions and 56 deletions
|
@ -5,96 +5,113 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
|||
Module: data.set
|
||||
Author: Jeremy Avigad, Leonardo de Moura
|
||||
-/
|
||||
|
||||
import data.bool
|
||||
open eq.ops bool
|
||||
import logic
|
||||
open eq.ops
|
||||
|
||||
namespace set
|
||||
definition set (T : Type) :=
|
||||
T → bool
|
||||
T → Prop
|
||||
definition mem [reducible] {T : Type} (x : T) (s : set T) :=
|
||||
(s x) = tt
|
||||
s x
|
||||
notation e ∈ s := mem e s
|
||||
|
||||
definition eqv {T : Type} (A B : set T) : Prop :=
|
||||
variable {T : Type}
|
||||
definition eqv (A B : set T) : Prop :=
|
||||
∀x, x ∈ A ↔ x ∈ B
|
||||
notation a ∼ b := eqv a b
|
||||
|
||||
theorem eqv_refl {T : Type} (A : set T) : A ∼ A :=
|
||||
theorem eqv_refl (A : set T) : A ∼ A :=
|
||||
take x, iff.rfl
|
||||
|
||||
theorem eqv_symm {T : Type} {A B : set T} (H : A ∼ B) : B ∼ A :=
|
||||
theorem eqv_symm {A B : set T} (H : A ∼ B) : B ∼ A :=
|
||||
take x, iff.symm (H x)
|
||||
|
||||
theorem eqv_trans {T : Type} {A B C : set T} (H1 : A ∼ B) (H2 : B ∼ C) : A ∼ C :=
|
||||
theorem eqv_trans {A B C : set T} (H1 : A ∼ B) (H2 : B ∼ C) : A ∼ C :=
|
||||
take x, iff.trans (H1 x) (H2 x)
|
||||
|
||||
definition empty [reducible] {T : Type} : set T :=
|
||||
λx, ff
|
||||
definition empty [reducible] : set T :=
|
||||
λx, false
|
||||
notation `∅` := empty
|
||||
|
||||
theorem mem_empty {T : Type} (x : T) : ¬ (x ∈ ∅) :=
|
||||
assume H : x ∈ ∅, absurd H ff_ne_tt
|
||||
theorem mem_empty (x : T) : ¬ (x ∈ ∅) :=
|
||||
assume H : x ∈ ∅, H
|
||||
|
||||
definition univ {T : Type} : set T :=
|
||||
λx, tt
|
||||
definition univ : set T :=
|
||||
λx, true
|
||||
|
||||
theorem mem_univ {T : Type} (x : T) : x ∈ univ :=
|
||||
rfl
|
||||
theorem mem_univ (x : T) : x ∈ univ :=
|
||||
trivial
|
||||
|
||||
definition inter [reducible] {T : Type} (A B : set T) : set T :=
|
||||
λx, A x && B x
|
||||
definition inter [reducible] (A B : set T) : set T :=
|
||||
λx, x ∈ A ∧ x ∈ B
|
||||
notation a ∩ b := inter a b
|
||||
|
||||
theorem mem_inter {T : Type} (x : T) (A B : set T) : x ∈ A ∩ B ↔ (x ∈ A ∧ x ∈ B) :=
|
||||
iff.intro
|
||||
(assume H, and.intro (band.eq_tt_elim_left H) (band.eq_tt_elim_right H))
|
||||
(assume H,
|
||||
have e1 : A x = tt, from and.elim_left H,
|
||||
have e2 : B x = tt, from and.elim_right H,
|
||||
show A x && B x = tt, from e1⁻¹ ▸ e2⁻¹ ▸ band.tt_left tt)
|
||||
theorem mem_inter (x : T) (A B : set T) : x ∈ A ∩ B ↔ (x ∈ A ∧ x ∈ B) :=
|
||||
!iff.refl
|
||||
|
||||
theorem inter_id {T : Type} (A : set T) : A ∩ A ∼ A :=
|
||||
take x, band.id (A x) ▸ iff.rfl
|
||||
theorem inter_id (A : set T) : A ∩ A ∼ A :=
|
||||
take x, iff.intro
|
||||
(assume H, and.elim_left H)
|
||||
(assume H, and.intro H H)
|
||||
|
||||
theorem inter_empty_right {T : Type} (A : set T) : A ∩ ∅ ∼ ∅ :=
|
||||
take x, band.ff_right (A x) ▸ iff.rfl
|
||||
theorem inter_empty_right (A : set T) : A ∩ ∅ ∼ ∅ :=
|
||||
take x, iff.intro
|
||||
(assume H, and.elim_right H)
|
||||
(assume H, false.elim H)
|
||||
|
||||
theorem inter_empty_left {T : Type} (A : set T) : ∅ ∩ A ∼ ∅ :=
|
||||
take x, band.ff_left (A x) ▸ iff.rfl
|
||||
theorem inter_empty_left (A : set T) : ∅ ∩ A ∼ ∅ :=
|
||||
take x, iff.intro
|
||||
(assume H, and.elim_left H)
|
||||
(assume H, false.elim H)
|
||||
|
||||
theorem inter_comm {T : Type} (A B : set T) : A ∩ B ∼ B ∩ A :=
|
||||
take x, band.comm (A x) (B x) ▸ iff.rfl
|
||||
theorem inter_comm (A B : set T) : A ∩ B ∼ B ∩ A :=
|
||||
take x, !and.comm
|
||||
|
||||
theorem inter_assoc {T : Type} (A B C : set T) : (A ∩ B) ∩ C ∼ A ∩ (B ∩ C) :=
|
||||
take x, band.assoc (A x) (B x) (C x) ▸ iff.rfl
|
||||
theorem inter_assoc (A B C : set T) : (A ∩ B) ∩ C ∼ A ∩ (B ∩ C) :=
|
||||
take x, !and.assoc
|
||||
|
||||
definition union [reducible] {T : Type} (A B : set T) : set T :=
|
||||
λx, A x || B x
|
||||
definition union [reducible] (A B : set T) : set T :=
|
||||
λx, x ∈ A ∨ x ∈ B
|
||||
notation a ∪ b := union a b
|
||||
|
||||
theorem mem_union {T : Type} (x : T) (A B : set T) : x ∈ A ∪ B ↔ (x ∈ A ∨ x ∈ B) :=
|
||||
iff.intro
|
||||
(assume H, bor.to_or H)
|
||||
(assume H, or.elim H
|
||||
(assume Ha : A x = tt,
|
||||
show A x || B x = tt, from Ha⁻¹ ▸ bor.tt_left (B x))
|
||||
(assume Hb : B x = tt,
|
||||
show A x || B x = tt, from Hb⁻¹ ▸ bor.tt_right (A x)))
|
||||
theorem mem_union (x : T) (A B : set T) : x ∈ A ∪ B ↔ (x ∈ A ∨ x ∈ B) :=
|
||||
!iff.refl
|
||||
|
||||
theorem union_id {T : Type} (A : set T) : A ∪ A ∼ A :=
|
||||
take x, bor.id (A x) ▸ iff.rfl
|
||||
theorem union_id (A : set T) : A ∪ A ∼ A :=
|
||||
take x, iff.intro
|
||||
(assume H,
|
||||
match H with
|
||||
| or.inl H₁ := H₁
|
||||
| or.inr H₂ := H₂
|
||||
end)
|
||||
(assume H, or.inl H)
|
||||
|
||||
theorem union_empty_right {T : Type} (A : set T) : A ∪ ∅ ∼ A :=
|
||||
take x, bor.ff_right (A x) ▸ iff.rfl
|
||||
theorem union_empty_right (A : set T) : A ∪ ∅ ∼ A :=
|
||||
take x, iff.intro
|
||||
(assume H, match H with
|
||||
| or.inl H₁ := H₁
|
||||
| or.inr H₂ := false.elim H₂
|
||||
end)
|
||||
(assume H, or.inl H)
|
||||
|
||||
theorem union_empty_left {T : Type} (A : set T) : ∅ ∪ A ∼ A :=
|
||||
take x, bor.ff_left (A x) ▸ iff.rfl
|
||||
theorem union_empty_left (A : set T) : ∅ ∪ A ∼ A :=
|
||||
take x, iff.intro
|
||||
(assume H, match H with
|
||||
| or.inl H₁ := false.elim H₁
|
||||
| or.inr H₂ := H₂
|
||||
end)
|
||||
(assume H, or.inr H)
|
||||
|
||||
theorem union_comm {T : Type} (A B : set T) : A ∪ B ∼ B ∪ A :=
|
||||
take x, bor.comm (A x) (B x) ▸ iff.rfl
|
||||
theorem union_comm (A B : set T) : A ∪ B ∼ B ∪ A :=
|
||||
take x, or.comm
|
||||
|
||||
theorem union_assoc {T : Type} (A B C : set T) : (A ∪ B) ∪ C ∼ A ∪ (B ∪ C) :=
|
||||
take x, bor.assoc (A x) (B x) (C x) ▸ iff.rfl
|
||||
theorem union_assoc (A B C : set T) : (A ∪ B) ∪ C ∼ A ∪ (B ∪ C) :=
|
||||
take x, or.assoc
|
||||
|
||||
definition subset (A B : set T) := ∀ x, x ∈ A → x ∈ B
|
||||
infix `⊆`:50 := subset
|
||||
|
||||
definition eqv_of_subset (A B : set T) : A ⊆ B → B ⊆ A → A ∼ B :=
|
||||
assume H₁ H₂, take x, iff.intro (H₁ x) (H₂ x)
|
||||
|
||||
end set
|
||||
|
|
Loading…
Reference in a new issue