feat(library/data/list/perm): use new 'injection' tactic
This commit is contained in:
parent
ce5ef5a6cc
commit
e948dd239c
1 changed files with 20 additions and 12 deletions
|
@ -124,18 +124,23 @@ theorem eq_singlenton_of_perm_inv (a : A) {l : list A} : [a] ~ l → l = [a] :=
|
|||
have gen : ∀ l₂, perm l₂ l → l₂ = [a] → l = [a], from
|
||||
take l₂, assume p, perm.induction_on p
|
||||
(λ e, e)
|
||||
(λ x l₁ l₂ p r e, list.no_confusion e (λ (e₁ : x = a) (e₂ : l₁ = []),
|
||||
(λ x l₁ l₂ p r e,
|
||||
begin
|
||||
injection e with e₁ e₂,
|
||||
rewrite [e₁, e₂ at p],
|
||||
have h₁ : l₂ = [], from eq_nil_of_perm_nil p,
|
||||
rewrite h₁
|
||||
end))
|
||||
(λ x y l e, list.no_confusion e (λ e₁ e₂, list.no_confusion e₂))
|
||||
end)
|
||||
(λ x y l e, by injection e; contradiction)
|
||||
(λ l₁ l₂ l₃ p₁ p₂ r₁ r₂ e, r₂ (r₁ e)),
|
||||
assume p, gen [a] p rfl
|
||||
|
||||
theorem eq_singlenton_of_perm (a b : A) : [a] ~ [b] → a = b :=
|
||||
assume p, list.no_confusion (eq_singlenton_of_perm_inv a p) (λ e₁ e₂, by rewrite e₁)
|
||||
assume p,
|
||||
begin
|
||||
injection eq_singlenton_of_perm_inv a p with e₁ e₂,
|
||||
rewrite e₁
|
||||
end
|
||||
|
||||
theorem perm_rev : ∀ (l : list A), l ~ (reverse l)
|
||||
| [] := nil
|
||||
|
@ -236,7 +241,7 @@ definition decidable_perm_aux : ∀ (n : nat) (l₁ l₂ : list A), length l₁
|
|||
by_cases
|
||||
(assume xinl₂ : x ∈ l₂,
|
||||
let t₂ : list A := erase x l₂ in
|
||||
have len_t₁ : length t₁ = n, from nat.no_confusion H₁ (λ e, e),
|
||||
have len_t₁ : length t₁ = n, begin injection H₁ with e, exact e end,
|
||||
assert len_t₂_aux : length t₂ = pred (length l₂), from length_erase_of_mem xinl₂,
|
||||
assert len_t₂ : length t₂ = n, by rewrite [len_t₂_aux, H₂],
|
||||
match decidable_perm_aux n t₁ t₂ len_t₁ len_t₂ with
|
||||
|
@ -267,10 +272,10 @@ private theorem discr {P : Prop} {a b : A} {l₁ l₂ l₃ : list A} :
|
|||
(l₂ = [] → a = b → l₁ = l₃ → P) →
|
||||
(∀ t, l₂ = a::t → l₁ = t++(b::l₃) → P) → P :=
|
||||
match l₂ with
|
||||
| [] := λ e h₁ h₂, list.no_confusion e (λ e₁ e₂, h₁ rfl e₁ e₂)
|
||||
| [] := λ e h₁ h₂, by injection e with e₁ e₂; exact h₁ rfl e₁ e₂
|
||||
| h::t := λ e h₁ h₂,
|
||||
begin
|
||||
apply list.no_confusion e, intro e₁ e₂,
|
||||
injection e with e₁ e₂,
|
||||
rewrite e₁ at h₂,
|
||||
exact h₂ t rfl e₂
|
||||
end
|
||||
|
@ -285,19 +290,22 @@ private theorem discr₂ {P : Prop} {a b c : A} {l₁ l₂ l₃ : list A} :
|
|||
(∀ t, l₂ = a::b::t → l₁ = t++(c::l₃) → P) → P :=
|
||||
match l₂ with
|
||||
| [] := λ e H₁ H₂ H₃,
|
||||
list.no_confusion e (λ a_eq_c b_l₁_eq_l₃, H₁ rfl (eq.symm b_l₁_eq_l₃) a_eq_c)
|
||||
begin
|
||||
injection e with a_eq_c b_l₁_eq_l₃,
|
||||
exact H₁ rfl (eq.symm b_l₁_eq_l₃) a_eq_c
|
||||
end
|
||||
| [h₁] := λ e H₁ H₂ H₃,
|
||||
begin
|
||||
rewrite [append_cons at e, append_nil_left at e],
|
||||
apply list.no_confusion e, intro a_eq_h₁ rest,
|
||||
apply list.no_confusion rest, intro b_eq_c l₁_eq_l₃,
|
||||
injection e with a_eq_h₁ rest,
|
||||
injection rest with b_eq_c l₁_eq_l₃,
|
||||
rewrite [a_eq_h₁ at H₂, b_eq_c at H₂, l₁_eq_l₃ at H₂],
|
||||
exact H₂ rfl rfl rfl
|
||||
end
|
||||
| h₁::h₂::t₂ := λ e H₁ H₂ H₃,
|
||||
begin
|
||||
apply list.no_confusion e, intro a_eq_h₁ rest,
|
||||
apply list.no_confusion rest, intro b_eq_h₂ l₁_eq,
|
||||
injection e with a_eq_h₁ rest,
|
||||
injection rest with b_eq_h₂ l₁_eq,
|
||||
rewrite [a_eq_h₁ at H₃, b_eq_h₂ at H₃],
|
||||
exact H₃ t₂ rfl l₁_eq
|
||||
end
|
||||
|
|
Loading…
Reference in a new issue