feat(library/data/list/perm): use new 'injection' tactic

This commit is contained in:
Leonardo de Moura 2015-05-01 13:08:36 -07:00
parent ce5ef5a6cc
commit e948dd239c

View file

@ -124,18 +124,23 @@ theorem eq_singlenton_of_perm_inv (a : A) {l : list A} : [a] ~ l → l = [a] :=
have gen : ∀ l₂, perm l₂ l → l₂ = [a] → l = [a], from have gen : ∀ l₂, perm l₂ l → l₂ = [a] → l = [a], from
take l₂, assume p, perm.induction_on p take l₂, assume p, perm.induction_on p
(λ e, e) (λ e, e)
(λ x l₁ l₂ p r e, list.no_confusion e (λ (e₁ : x = a) (e₂ : l₁ = []), (λ x l₁ l₂ p r e,
begin begin
injection e with e₁ e₂,
rewrite [e₁, e₂ at p], rewrite [e₁, e₂ at p],
have h₁ : l₂ = [], from eq_nil_of_perm_nil p, have h₁ : l₂ = [], from eq_nil_of_perm_nil p,
rewrite h₁ rewrite h₁
end)) end)
(λ x y l e, list.no_confusion e (λ e₁ e₂, list.no_confusion e₂)) (λ x y l e, by injection e; contradiction)
(λ l₁ l₂ l₃ p₁ p₂ r₁ r₂ e, r₂ (r₁ e)), (λ l₁ l₂ l₃ p₁ p₂ r₁ r₂ e, r₂ (r₁ e)),
assume p, gen [a] p rfl assume p, gen [a] p rfl
theorem eq_singlenton_of_perm (a b : A) : [a] ~ [b] → a = b := theorem eq_singlenton_of_perm (a b : A) : [a] ~ [b] → a = b :=
assume p, list.no_confusion (eq_singlenton_of_perm_inv a p) (λ e₁ e₂, by rewrite e₁) assume p,
begin
injection eq_singlenton_of_perm_inv a p with e₁ e₂,
rewrite e₁
end
theorem perm_rev : ∀ (l : list A), l ~ (reverse l) theorem perm_rev : ∀ (l : list A), l ~ (reverse l)
| [] := nil | [] := nil
@ -236,7 +241,7 @@ definition decidable_perm_aux : ∀ (n : nat) (l₁ l₂ : list A), length l₁
by_cases by_cases
(assume xinl₂ : x ∈ l₂, (assume xinl₂ : x ∈ l₂,
let t₂ : list A := erase x l₂ in let t₂ : list A := erase x l₂ in
have len_t₁ : length t₁ = n, from nat.no_confusion H₁ (λ e, e), have len_t₁ : length t₁ = n, begin injection H₁ with e, exact e end,
assert len_t₂_aux : length t₂ = pred (length l₂), from length_erase_of_mem xinl₂, assert len_t₂_aux : length t₂ = pred (length l₂), from length_erase_of_mem xinl₂,
assert len_t₂ : length t₂ = n, by rewrite [len_t₂_aux, H₂], assert len_t₂ : length t₂ = n, by rewrite [len_t₂_aux, H₂],
match decidable_perm_aux n t₁ t₂ len_t₁ len_t₂ with match decidable_perm_aux n t₁ t₂ len_t₁ len_t₂ with
@ -267,10 +272,10 @@ private theorem discr {P : Prop} {a b : A} {l₁ l₂ l₃ : list A} :
(l₂ = [] → a = b → l₁ = l₃ → P) → (l₂ = [] → a = b → l₁ = l₃ → P) →
(∀ t, l₂ = a::t → l₁ = t++(b::l₃) → P) → P := (∀ t, l₂ = a::t → l₁ = t++(b::l₃) → P) → P :=
match l₂ with match l₂ with
| [] := λ e h₁ h₂, list.no_confusion e (λ e₁ e₂, h₁ rfl e₁ e₂) | [] := λ e h₁ h₂, by injection e with e₁ e₂; exact h₁ rfl e₁ e₂
| h::t := λ e h₁ h₂, | h::t := λ e h₁ h₂,
begin begin
apply list.no_confusion e, intro e₁ e₂, injection e with e₁ e₂,
rewrite e₁ at h₂, rewrite e₁ at h₂,
exact h₂ t rfl e₂ exact h₂ t rfl e₂
end end
@ -285,19 +290,22 @@ private theorem discr₂ {P : Prop} {a b c : A} {l₁ l₂ l₃ : list A} :
(∀ t, l₂ = a::b::t → l₁ = t++(c::l₃) → P) → P := (∀ t, l₂ = a::b::t → l₁ = t++(c::l₃) → P) → P :=
match l₂ with match l₂ with
| [] := λ e H₁ H₂ H₃, | [] := λ e H₁ H₂ H₃,
list.no_confusion e (λ a_eq_c b_l₁_eq_l₃, H₁ rfl (eq.symm b_l₁_eq_l₃) a_eq_c) begin
injection e with a_eq_c b_l₁_eq_l₃,
exact H₁ rfl (eq.symm b_l₁_eq_l₃) a_eq_c
end
| [h₁] := λ e H₁ H₂ H₃, | [h₁] := λ e H₁ H₂ H₃,
begin begin
rewrite [append_cons at e, append_nil_left at e], rewrite [append_cons at e, append_nil_left at e],
apply list.no_confusion e, intro a_eq_h₁ rest, injection e with a_eq_h₁ rest,
apply list.no_confusion rest, intro b_eq_c l₁_eq_l₃, injection rest with b_eq_c l₁_eq_l₃,
rewrite [a_eq_h₁ at H₂, b_eq_c at H₂, l₁_eq_l₃ at H₂], rewrite [a_eq_h₁ at H₂, b_eq_c at H₂, l₁_eq_l₃ at H₂],
exact H₂ rfl rfl rfl exact H₂ rfl rfl rfl
end end
| h₁::h₂::t₂ := λ e H₁ H₂ H₃, | h₁::h₂::t₂ := λ e H₁ H₂ H₃,
begin begin
apply list.no_confusion e, intro a_eq_h₁ rest, injection e with a_eq_h₁ rest,
apply list.no_confusion rest, intro b_eq_h₂ l₁_eq, injection rest with b_eq_h₂ l₁_eq,
rewrite [a_eq_h₁ at H₃, b_eq_h₂ at H₃], rewrite [a_eq_h₁ at H₃, b_eq_h₂ at H₃],
exact H₃ t₂ rfl l₁_eq exact H₃ t₂ rfl l₁_eq
end end