fix(library/data): powerset notation
This commit is contained in:
parent
51c48277c8
commit
f4a81fdd73
3 changed files with 19 additions and 20 deletions
|
@ -393,22 +393,21 @@ quot.lift_on s
|
|||
(λ l, list_powerset (elt_of l))
|
||||
(λ l₁ l₂ p, list_powerset_eq_list_powerset_of_perm p)
|
||||
|
||||
notation [priority finset.prio] `𝒫` s := powerset s
|
||||
prefix [priority finset.prio] `𝒫`:100 := powerset
|
||||
|
||||
theorem powerset_empty : powerset (∅ : finset A) = '{∅} := rfl
|
||||
theorem powerset_empty : 𝒫 (∅ : finset A) = '{∅} := rfl
|
||||
|
||||
theorem powerset_insert {a : A} {s : finset A} : a ∉ s →
|
||||
powerset (insert a s) = powerset s ∪ image (insert a) (powerset s) :=
|
||||
theorem powerset_insert {a : A} {s : finset A} : a ∉ s → 𝒫 (insert a s) = 𝒫 s ∪ image (insert a) (𝒫 s) :=
|
||||
quot.induction_on s
|
||||
(λ l,
|
||||
assume H : a ∉ quot.mk l,
|
||||
calc
|
||||
powerset (insert a (quot.mk l))
|
||||
𝒫 (insert a (quot.mk l))
|
||||
= list_powerset (list.insert a (elt_of l)) : rfl
|
||||
... = list_powerset (#list a :: elt_of l) : by rewrite [list.insert_eq_of_not_mem H]
|
||||
... = powerset (quot.mk l) ∪ image (insert a) (powerset (quot.mk l)) : rfl)
|
||||
... = 𝒫 (quot.mk l) ∪ image (insert a) (𝒫 (quot.mk l)) : rfl)
|
||||
|
||||
theorem mem_powerset_iff_subset (s : finset A) : ∀ x, x ∈ powerset s ↔ x ⊆ s :=
|
||||
theorem mem_powerset_iff_subset (s : finset A) : ∀ x, x ∈ 𝒫 s ↔ x ⊆ s :=
|
||||
begin
|
||||
induction s with a s nains ih,
|
||||
intro x,
|
||||
|
@ -421,7 +420,7 @@ begin
|
|||
(assume H,
|
||||
or.elim H
|
||||
(suppose x ⊆ s, subset.trans this !subset_insert)
|
||||
(suppose ∃ y, y ∈ powerset s ∧ insert a y = x,
|
||||
(suppose ∃ y, y ∈ 𝒫 s ∧ insert a y = x,
|
||||
obtain y [yps iay], from this,
|
||||
show x ⊆ insert a s,
|
||||
begin
|
||||
|
@ -436,19 +435,19 @@ begin
|
|||
(suppose a ∈ x,
|
||||
or.inr (exists.intro (erase a x)
|
||||
(and.intro
|
||||
(show erase a x ∈ powerset s, by rewrite ih; apply H')
|
||||
(show erase a x ∈ 𝒫 s, by rewrite ih; apply H')
|
||||
(show insert a (erase a x) = x, from insert_erase this))))
|
||||
(suppose a ∉ x, or.inl
|
||||
(show x ⊆ s, by rewrite [(erase_eq_of_not_mem this) at H']; apply H'))))
|
||||
end
|
||||
|
||||
theorem subset_of_mem_powerset {s t : finset A} (H : s ∈ powerset t) : s ⊆ t :=
|
||||
theorem subset_of_mem_powerset {s t : finset A} (H : s ∈ 𝒫 t) : s ⊆ t :=
|
||||
iff.mp (mem_powerset_iff_subset t s) H
|
||||
|
||||
theorem mem_powerset_of_subset {s t : finset A} (H : s ⊆ t) : s ∈ powerset t :=
|
||||
theorem mem_powerset_of_subset {s t : finset A} (H : s ⊆ t) : s ∈ 𝒫 t :=
|
||||
iff.mpr (mem_powerset_iff_subset t s) H
|
||||
|
||||
theorem empty_mem_powerset (s : finset A) : ∅ ∈ powerset s :=
|
||||
theorem empty_mem_powerset (s : finset A) : ∅ ∈ 𝒫 s :=
|
||||
mem_powerset_of_subset (empty_subset s)
|
||||
|
||||
end powerset
|
||||
|
|
|
@ -368,19 +368,19 @@ begin unfold [image, union], rewrite [*to_finset_of_finset, finset.image_union]
|
|||
definition powerset (s : hf) : hf :=
|
||||
of_finset (finset.image of_finset (finset.powerset (to_finset s)))
|
||||
|
||||
notation [priority hf.prio] `𝒫` s := powerset s
|
||||
prefix [priority hf.prio] `𝒫`:100 := powerset
|
||||
|
||||
theorem powerset_empty : powerset ∅ = insert ∅ ∅ :=
|
||||
theorem powerset_empty : 𝒫 ∅ = insert ∅ ∅ :=
|
||||
rfl
|
||||
|
||||
theorem powerset_insert {a : hf} {s : hf} : a ∉ s → powerset (insert a s) = powerset s ∪ image (insert a) (powerset s) :=
|
||||
theorem powerset_insert {a : hf} {s : hf} : a ∉ s → 𝒫 (insert a s) = 𝒫 s ∪ image (insert a) (𝒫 s) :=
|
||||
begin unfold [not_mem, mem, powerset, insert, union, image], rewrite [*to_finset_of_finset], intro h,
|
||||
have (λ (x : finset hf), of_finset (finset.insert a x)) = (λ (x : finset hf), of_finset (finset.insert a (to_finset (of_finset x)))), from
|
||||
funext (λ x, by rewrite to_finset_of_finset),
|
||||
rewrite [finset.powerset_insert h, finset.image_union, -*finset.image_compose,↑compose,this]
|
||||
end
|
||||
|
||||
theorem mem_powerset_iff_subset (s : hf) : ∀ x : hf, x ∈ powerset s ↔ x ⊆ s :=
|
||||
theorem mem_powerset_iff_subset (s : hf) : ∀ x : hf, x ∈ 𝒫 s ↔ x ⊆ s :=
|
||||
begin
|
||||
intro x, unfold [mem, powerset, subset], rewrite [to_finset_of_finset, finset.mem_image_eq], apply iff.intro,
|
||||
suppose (∃ (w : finset hf), finset.mem w (finset.powerset (to_finset s)) ∧ of_finset w = x),
|
||||
|
@ -391,12 +391,12 @@ begin
|
|||
exists.intro (to_finset x) (and.intro this (of_finset_to_finset x))
|
||||
end
|
||||
|
||||
theorem subset_of_mem_powerset {s t : hf} (H : s ∈ powerset t) : s ⊆ t :=
|
||||
theorem subset_of_mem_powerset {s t : hf} (H : s ∈ 𝒫 t) : s ⊆ t :=
|
||||
iff.mp (mem_powerset_iff_subset t s) H
|
||||
|
||||
theorem mem_powerset_of_subset {s t : hf} (H : s ⊆ t) : s ∈ powerset t :=
|
||||
theorem mem_powerset_of_subset {s t : hf} (H : s ⊆ t) : s ∈ 𝒫 t :=
|
||||
iff.mpr (mem_powerset_iff_subset t s) H
|
||||
|
||||
theorem empty_mem_powerset (s : hf) : ∅ ∈ powerset s :=
|
||||
theorem empty_mem_powerset (s : hf) : ∅ ∈ 𝒫 s :=
|
||||
mem_powerset_of_subset (empty_subset s)
|
||||
end hf
|
||||
|
|
|
@ -297,7 +297,7 @@ ext (take x, iff.intro
|
|||
/- powerset -/
|
||||
|
||||
definition powerset (s : set X) : set (set X) := {x : set X | x ⊆ s}
|
||||
notation `𝒫` s := powerset s
|
||||
prefix `𝒫`:100 := powerset
|
||||
|
||||
/- large unions -/
|
||||
|
||||
|
|
Loading…
Reference in a new issue