feat(library/tactic): add absurd_tactic

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2013-12-01 07:44:49 -08:00
parent bf2adb20e7
commit f91c4901e8
6 changed files with 69 additions and 2 deletions

View file

@ -9,6 +9,8 @@ Author: Leonardo de Moura
#include "kernel/type_checker.h" #include "kernel/type_checker.h"
#include "library/basic_thms.h" #include "library/basic_thms.h"
#include "kernel/kernel_exception.h"
namespace lean { namespace lean {
MK_CONSTANT(trivial, name("Trivial")); MK_CONSTANT(trivial, name("Trivial"));
@ -21,6 +23,7 @@ MK_CONSTANT(double_neg_elim_fn, name("DoubleNegElim"));
MK_CONSTANT(mt_fn, name("MT")); MK_CONSTANT(mt_fn, name("MT"));
MK_CONSTANT(contrapos_fn, name("Contrapos")); MK_CONSTANT(contrapos_fn, name("Contrapos"));
MK_CONSTANT(false_imp_any_fn, name("FalseImpAny")); MK_CONSTANT(false_imp_any_fn, name("FalseImpAny"));
MK_CONSTANT(absurd_imp_any_fn, name("AbsurdImpAny"));
MK_CONSTANT(eq_mp_fn, name("EqMP")); MK_CONSTANT(eq_mp_fn, name("EqMP"));
MK_CONSTANT(not_imp1_fn, name("NotImp1")); MK_CONSTANT(not_imp1_fn, name("NotImp1"));
MK_CONSTANT(not_imp2_fn, name("NotImp2")); MK_CONSTANT(not_imp2_fn, name("NotImp2"));
@ -117,6 +120,11 @@ void import_basic_thms(environment & env) {
env.add_theorem(false_imp_any_fn_name, Pi({a, Bool}, Implies(False, a)), env.add_theorem(false_imp_any_fn_name, Pi({a, Bool}, Implies(False, a)),
Fun({a, Bool}, Case(Fun({x, Bool}, Implies(False, x)), Trivial, Trivial, a))); Fun({a, Bool}, Case(Fun({x, Bool}, Implies(False, x)), Trivial, Trivial, a)));
// AbsurdImpliesAny : Pi (a c : Bool) (H1 : a) (H2 : Not a), c
env.add_theorem(absurd_imp_any_fn_name, Pi({{a, Bool}, {c, Bool}, {H1, a}, {H2, Not(a)}}, c),
Fun({{a, Bool}, {c, Bool}, {H1, a}, {H2, Not(a)}},
MP(False, c, FalseImpAny(c), Absurd(a, H1, H2))));
// EqMP : Pi (a b: Bool) (H1 : a = b) (H2 : a), b // EqMP : Pi (a b: Bool) (H1 : a = b) (H2 : a), b
env.add_theorem(eq_mp_fn_name, Pi({{a, Bool}, {b, Bool}, {H1, Eq(a, b)}, {H2, a}}, b), env.add_theorem(eq_mp_fn_name, Pi({{a, Bool}, {b, Bool}, {H1, Eq(a, b)}, {H2, a}}, b),
Fun({{a, Bool}, {b, Bool}, {H1, Eq(a, b)}, {H2, a}}, Fun({{a, Bool}, {b, Bool}, {H1, Eq(a, b)}, {H2, a}},

View file

@ -45,8 +45,14 @@ expr mk_contrapos_fn();
inline expr Contrapos(expr const & a, expr const & b, expr const & H) { return mk_app(mk_contrapos_fn(), a, b, H); } inline expr Contrapos(expr const & a, expr const & b, expr const & H) { return mk_app(mk_contrapos_fn(), a, b, H); }
expr mk_false_imp_any_fn(); expr mk_false_imp_any_fn();
/** \brief (Theorem) a : Bool, H : False |- a */ /** \brief (Theorem) a : Bool |- false => a */
inline expr FalseImpAny(expr const & a, expr const & H) { return mk_app(mk_false_imp_any_fn(), a, H); } inline expr FalseImpAny(expr const & a) { return mk_app(mk_false_imp_any_fn(), a); }
expr mk_absurd_imp_any_fn();
/** \brief (Theorem) {a c : Bool}, H1 : a, H2 : Not(a) |- AbsurdImpAny(a, H1, H2) : c */
inline expr AbsurdImpAny(expr const & a, expr const & c, expr const & H1, expr const & H2) {
return mk_app(mk_absurd_imp_any_fn(), a, c, H1, H2);
}
expr mk_eq_mp_fn(); expr mk_eq_mp_fn();
/** \brief (Theorem) {a b : Bool}, H1 : a = b, H2 : a |- EqMP(a, b, H1, H2) : b */ /** \brief (Theorem) {a b : Bool}, H1 : a = b, H2 : a |- EqMP(a, b, H1, H2) : b */

View file

@ -239,6 +239,39 @@ tactic disj_hyp_tactic() {
}); });
} }
tactic absurd_tactic() {
return mk_tactic01([](environment const &, io_state const &, proof_state const & s) -> optional<proof_state> {
list<std::pair<name, expr>> proofs;
goals new_gs = map_goals(s, [&](name const & gname, goal const & g) -> goal {
expr const & c = g.get_conclusion();
for (auto const & p1 : g.get_hypotheses()) {
check_interrupted();
expr a;
if (is_not(p1.second, a)) {
for (auto const & p2 : g.get_hypotheses()) {
if (p2.second == a) {
expr pr = AbsurdImpAny(a, c, mk_constant(p2.first), mk_constant(p1.first));
proofs.emplace_front(gname, pr);
return goal(); // remove goal
}
}
}
}
return g; // keep goal
});
if (empty(proofs))
return none_proof_state(); // tactic failed
proof_builder pb = s.get_proof_builder();
proof_builder new_pb = mk_proof_builder([=](proof_map const & m, assignment const & a) -> expr {
proof_map new_m(m);
for (auto const & np : proofs) {
new_m.insert(np.first, np.second);
}
return pb(new_m, a);
});
return some(proof_state(s, new_gs, new_pb));
});
}
static int mk_conj_tactic(lua_State * L) { static int mk_conj_tactic(lua_State * L) {
int nargs = lua_gettop(L); int nargs = lua_gettop(L);
@ -265,10 +298,15 @@ static int mk_disj_hyp_tactic(lua_State * L) {
return push_tactic(L, disj_hyp_tactic(to_name_ext(L, 1), to_name_ext(L, 2))); return push_tactic(L, disj_hyp_tactic(to_name_ext(L, 1), to_name_ext(L, 2)));
} }
static int mk_absurd_tactic(lua_State * L) {
return push_tactic(L, absurd_tactic());
}
void open_boolean(lua_State * L) { void open_boolean(lua_State * L) {
SET_GLOBAL_FUN(mk_conj_tactic, "conj_tactic"); SET_GLOBAL_FUN(mk_conj_tactic, "conj_tactic");
SET_GLOBAL_FUN(mk_imp_tactic, "imp_tactic"); SET_GLOBAL_FUN(mk_imp_tactic, "imp_tactic");
SET_GLOBAL_FUN(mk_conj_hyp_tactic, "conj_hyp_tactic"); SET_GLOBAL_FUN(mk_conj_hyp_tactic, "conj_hyp_tactic");
SET_GLOBAL_FUN(mk_disj_hyp_tactic, "disj_hyp_tactic"); SET_GLOBAL_FUN(mk_disj_hyp_tactic, "disj_hyp_tactic");
SET_GLOBAL_FUN(mk_absurd_tactic, "absurd_tactic");
} }
} }

View file

@ -13,5 +13,6 @@ tactic imp_tactic(name const & H_name = name("H"), bool all = true);
tactic disj_hyp_tactic(name const & goal_name, name const & hyp_name); tactic disj_hyp_tactic(name const & goal_name, name const & hyp_name);
tactic disj_hyp_tactic(name const & hyp_name); tactic disj_hyp_tactic(name const & hyp_name);
tactic disj_hyp_tactic(); tactic disj_hyp_tactic();
tactic absurd_tactic();
void open_boolean(lua_State * L); void open_boolean(lua_State * L);
} }

8
tests/lean/tactic8.lean Normal file
View file

@ -0,0 +1,8 @@
Theorem T (a b : Bool) : a \/ b => (not b) => a := _.
apply imp_tactic
apply imp_tactic
apply disj_hyp_tactic
apply assumption_tactic
apply absurd_tactic
done
Show Environment 1.

View file

@ -0,0 +1,6 @@
Set: pp::colors
Set: pp::unicode
Proved: T
Theorem T (a b : Bool) : a b ⇒ ¬ b ⇒ a :=
Discharge
(λ H : a b, Discharge (λ H::1 : ¬ b, DisjCases H (λ H : a, H) (λ H : b, AbsurdImpAny b a H H::1)))