feat(hott): add recursor to refl_quotient

This commit is contained in:
Floris van Doorn 2015-11-22 03:08:31 -05:00 committed by Leonardo de Moura
parent ae92e8c94d
commit fe8a858d79
5 changed files with 45 additions and 57 deletions

View file

@ -22,6 +22,7 @@ namespace e_closure
infix ` ⬝r `:75 := e_closure.trans infix ` ⬝r `:75 := e_closure.trans
postfix `⁻¹ʳ`:(max+10) := e_closure.symm postfix `⁻¹ʳ`:(max+10) := e_closure.symm
notation `[`:max a `]`:0 := e_closure.of_rel a notation `[`:max a `]`:0 := e_closure.of_rel a
notation `<`:max p `>`:0 := e_closure.of_path _ p
abbreviation rfl {A : Type} {R : A → A → Type} {a : A} := of_path R (idpath a) abbreviation rfl {A : Type} {R : A → A → Type} {a : A} := of_path R (idpath a)
end e_closure end e_closure
open e_closure open e_closure
@ -57,21 +58,6 @@ section
exact ap_con g (e_closure.elim e r) (e_closure.elim e r') ⬝ (IH₁ ◾ IH₂) exact ap_con g (e_closure.elim e r) (e_closure.elim e r') ⬝ (IH₁ ◾ IH₂)
end end
/- definition ap_e_closure_elim_h_inv [unfold_full] {B C : Type} {f : A → B} {g : B → C}
(e : Π⦃a a' : A⦄, R a a' → f a = f a')
{e' : Π⦃a a' : A⦄, R a a' → g (f a) = g (f a')}
(p : Π⦃a a' : A⦄ (s : R a a'), ap g (e s) = e' s) (t : T a a')
: ap_e_closure_elim_h e p t⁻¹ʳ = ap_inv g (e_closure.elim e t) ⬝ (ap_e_closure_elim_h e p t)⁻² :=
by reflexivity
definition ap_e_closure_elim_h_con [unfold_full] {B C : Type} {f : A → B} {g : B → C}
(e : Π⦃a a' : A⦄, R a a' → f a = f a')
{e' : Π⦃a a' : A⦄, R a a' → g (f a) = g (f a')}
(p : Π⦃a a' : A⦄ (s : R a a'), ap g (e s) = e' s) (t : T a a') (t' : T a' a'')
: ap_e_closure_elim_h e p (t ⬝r t') = ap_con g (e_closure.elim e t) (e_closure.elim e t') ⬝
(ap_e_closure_elim_h e p t ◾ ap_e_closure_elim_h e p t') :=
by reflexivity-/
definition ap_e_closure_elim [unfold 10] {B C : Type} {f : A → B} (g : B → C) definition ap_e_closure_elim [unfold 10] {B C : Type} {f : A → B} (g : B → C)
(e : Π⦃a a' : A⦄, R a a' → f a = f a') (t : T a a') (e : Π⦃a a' : A⦄, R a a' → f a = f a') (t : T a a')
: ap g (e_closure.elim e t) = e_closure.elim (λa a' r, ap g (e r)) t := : ap g (e_closure.elim e t) = e_closure.elim (λa a' r, ap g (e r)) t :=
@ -141,6 +127,7 @@ section
intro a a' a'' t t', exact t ⬝r t', intro a a' a'' t t', exact t ⬝r t',
end end
/-
definition e_closure.transport_left {f : A → B} (e : Π⦃a a' : A⦄, R a a' → f a = f a') definition e_closure.transport_left {f : A → B} (e : Π⦃a a' : A⦄, R a a' → f a = f a')
(t : e_closure R a a') (p : a = a'') (t : e_closure R a a') (p : a = a'')
: e_closure.elim e (p ▸ t) = (ap f p)⁻¹ ⬝ e_closure.elim e t := : e_closure.elim e (p ▸ t) = (ap f p)⁻¹ ⬝ e_closure.elim e t :=
@ -155,6 +142,7 @@ section
(t : e_closure R a a) (p : a = a') (t : e_closure R a a) (p : a = a')
: e_closure.elim e (p ▸ t) = (ap f p)⁻¹ ⬝ e_closure.elim e t ⬝ (ap f p) := : e_closure.elim e (p ▸ t) = (ap f p)⁻¹ ⬝ e_closure.elim e t ⬝ (ap f p) :=
by induction p; esimp; exact !idp_con⁻¹ by induction p; esimp; exact !idp_con⁻¹
-/
/- dependent elimination -/ /- dependent elimination -/

View file

@ -14,9 +14,13 @@ hits related to homotopy theory are defined in
Files in this folder: Files in this folder:
* [quotient](quotient.hlean) (quotients, primitive) * [quotient](quotient.hlean): quotients, primitive
* [trunc](trunc.hlean) (truncation, primitive) * [trunc](trunc.hlean): truncation, primitive
* [colimit](colimit.hlean) (Colimits of arbitrary diagrams and sequential colimits, defined using quotients) * [colimit](colimit.hlean): Colimits of arbitrary diagrams and sequential colimits, defined using quotients
* [pushout](pushout.hlean) (Pushouts, defined using quotients) * [pushout](pushout.hlean): Pushouts, defined using quotients
* [coeq](coeq.hlean) (Co-equalizers, defined using quotients) * [coeq](coeq.hlean): Co-equalizers, defined using quotients
* [set_quotient](set_quotient.hlean) (Set-quotients, defined using quotients and set-truncation) * [set_quotient](set_quotient.hlean): Set-quotients, defined using quotients and set-truncation
The following hits have also 2-constructors. They are defined only using quotients.
* [two_quotient](two_quotient.hlean): Quotients where you can also specify 2-paths. These are used for all hits which have 2-constructors, and they are almost fully general for such hits, as long as they are nonrecursive
* [refl_quotient](refl_quotient.hlean): Quotients where you can also specify 2-paths

View file

@ -20,7 +20,7 @@ section
open refl_quotient_Q open refl_quotient_Q
local abbreviation Q := refl_quotient_Q local abbreviation Q := refl_quotient_Q
definition refl_quotient : Type := simple_two_quotient R Q -- TODO: define this in root namespace definition refl_quotient : Type := simple_two_quotient R Q
definition rclass_of (a : A) : refl_quotient := incl0 R Q a definition rclass_of (a : A) : refl_quotient := incl0 R Q a
definition req_of_rel ⦃a a' : A⦄ (r : R a a') : rclass_of a = rclass_of a' := definition req_of_rel ⦃a a' : A⦄ (r : R a a') : rclass_of a = rclass_of a' :=
@ -29,32 +29,26 @@ section
definition pρ (a : A) : req_of_rel (ρ a) = idp := definition pρ (a : A) : req_of_rel (ρ a) = idp :=
incl2 R Q (Qmk a) incl2 R Q (Qmk a)
-- protected definition rec {P : refl_quotient → Type} protected definition rec {P : refl_quotient → Type} (Pc : Π(a : A), P (rclass_of a))
-- (Pc : Π(a : A), P (rclass_of a)) (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a =[req_of_rel H] Pc a')
-- (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a =[req_of_rel H] Pc a') (Pr : Π(a : A), change_path (pρ a) (Pp (ρ a)) = idpo) (x : refl_quotient) : P x :=
-- (Pr : Π(a : A), Pp (ρ a) =[pρ a] idpo) begin
-- (x : refl_quotient) : P x := induction x,
-- sorry exact Pc a,
exact Pp s,
induction q, apply Pr
end
-- protected definition rec_on [reducible] {P : refl_quotient → Type} protected definition rec_on [reducible] {P : refl_quotient → Type} (x : refl_quotient)
-- (Pc : Π(a : A), P (rclass_of a)) (Pc : Π(a : A), P (rclass_of a)) (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a =[req_of_rel H] Pc a')
-- (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a =[req_of_rel H] Pc a') (Pr : Π(a : A), change_path (pρ a) (Pp (ρ a)) = idpo) : P x :=
-- (Pr : Π(a : A), Pp (ρ a) =[pρ a] idpo) : P y := rec Pc Pp Pr x
-- rec Pinl Pinr Pglue y
-- definition rec_req_of_rel {P : Type} {P : refl_quotient → Type} definition rec_req_of_rel {P : Type} {P : refl_quotient → Type} (Pc : Π(a : A), P (rclass_of a))
-- (Pc : Π(a : A), P (rclass_of a)) (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a =[req_of_rel H] Pc a')
-- (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a =[req_of_rel H] Pc a') (Pr : Π(a : A), change_path (pρ a) (Pp (ρ a)) = idpo) ⦃a a' : A⦄ (r : R a a')
-- (Pr : Π(a : A), Pp (ρ a) =[pρ a] idpo) : apdo (rec Pc Pp Pr) (req_of_rel r) = Pp r :=
-- ⦃a a' : A⦄ (r : R a a') : apdo (rec Pc Pp Pr) (req_of_rel r) = Pp r := !rec_incl1
-- !rec_incl1
-- theorem rec_pρ {P : Type} {P : refl_quotient → Type}
-- (Pc : Π(a : A), P (rclass_of a))
-- (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a =[req_of_rel H] Pc a')
-- (Pr : Π(a : A), Pp (ρ a) =[pρ a] idpo) (a : A)
-- : square (ap02 (rec Pc Pp Pr) (pρ a)) (Pr a) (elim_req_of_rel Pr (ρ a)) idp :=
-- !rec_incl2
protected definition elim {P : Type} (Pc : Π(a : A), P) protected definition elim {P : Type} (Pc : Π(a : A), P)
(Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a = Pc a') (Pr : Π(a : A), Pp (ρ a) = idp) (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a = Pc a') (Pr : Π(a : A), Pp (ρ a) = idp)
@ -84,7 +78,7 @@ end
end refl_quotient end refl_quotient
attribute refl_quotient.rclass_of [constructor] attribute refl_quotient.rclass_of [constructor]
attribute /-refl_quotient.rec-/ refl_quotient.elim [unfold 8] [recursor 8] attribute refl_quotient.rec refl_quotient.elim [unfold 8] [recursor 8]
--attribute refl_quotient.elim_type [unfold 9] --attribute refl_quotient.elim_type [unfold 9]
attribute /-refl_quotient.rec_on-/ refl_quotient.elim_on [unfold 5] attribute refl_quotient.rec_on refl_quotient.elim_on [unfold 5]
--attribute refl_quotient.elim_type_on [unfold 6] --attribute refl_quotient.elim_type_on [unfold 6]

View file

@ -34,7 +34,7 @@ section
{ intro x', apply Pt}, { intro x', apply Pt},
{ intro y, fapply (quotient.rec_on y), { intro y, fapply (quotient.rec_on y),
{ exact Pc}, { exact Pc},
{ intros, apply equiv.to_inv !(pathover_compose _ tr), apply Pp}} { intros, exact pathover_of_pathover_ap P tr (Pp H)}}
end end
protected definition rec_on [reducible] {P : set_quotient → Type} (x : set_quotient) protected definition rec_on [reducible] {P : set_quotient → Type} (x : set_quotient)

View file

@ -133,6 +133,7 @@ namespace simple_two_quotient
local attribute simple_two_quotient f i D incl0 aux incl1 incl2' inclt [reducible] local attribute simple_two_quotient f i D incl0 aux incl1 incl2' inclt [reducible]
local attribute i aux incl0 [constructor] local attribute i aux incl0 [constructor]
parameters {R Q}
protected definition rec {P : D → Type} (P0 : Π(a : A), P (incl0 a)) protected definition rec {P : D → Type} (P0 : Π(a : A), P (incl0 a))
(P1 : Π⦃a a' : A⦄ (s : R a a'), P0 a =[incl1 s] P0 a') (P1 : Π⦃a a' : A⦄ (s : R a a'), P0 a =[incl1 s] P0 a')
(P2 : Π⦃a : A⦄ ⦃r : T a a⦄ (q : Q r), (P2 : Π⦃a : A⦄ ⦃r : T a a⦄ (q : Q r),
@ -358,6 +359,7 @@ namespace two_quotient
definition incl2 (q : Q t t') : inclt t = inclt t' := definition incl2 (q : Q t t') : inclt t = inclt t' :=
eq_of_con_inv_eq_idp (incl2 _ _ (Qmk R q)) eq_of_con_inv_eq_idp (incl2 _ _ (Qmk R q))
parameters {R Q}
protected definition rec {P : two_quotient → Type} (P0 : Π(a : A), P (incl0 a)) protected definition rec {P : two_quotient → Type} (P0 : Π(a : A), P (incl0 a))
(P1 : Π⦃a a' : A⦄ (s : R a a'), P0 a =[incl1 s] P0 a') (P1 : Π⦃a a' : A⦄ (s : R a a'), P0 a =[incl1 s] P0 a')
(P2 : Π⦃a a' : A⦄ ⦃t t' : T a a'⦄ (q : Q t t'), (P2 : Π⦃a a' : A⦄ ⦃t t' : T a a'⦄ (q : Q t t'),
@ -389,14 +391,14 @@ namespace two_quotient
(P2 : Π⦃a a' : A⦄ ⦃t t' : T a a'⦄ (q : Q t t'), (P2 : Π⦃a a' : A⦄ ⦃t t' : T a a'⦄ (q : Q t t'),
change_path (incl2 q) (e_closure.elimo incl1 P1 t) = e_closure.elimo incl1 P1 t') change_path (incl2 q) (e_closure.elimo incl1 P1 t) = e_closure.elimo incl1 P1 t')
⦃a a' : A⦄ (s : R a a') : apdo (rec P0 P1 P2) (incl1 s) = P1 s := ⦃a a' : A⦄ (s : R a a') : apdo (rec P0 P1 P2) (incl1 s) = P1 s :=
rec_incl1 _ _ _ _ _ s rec_incl1 _ _ _ s
theorem rec_inclt {P : two_quotient → Type} (P0 : Π(a : A), P (incl0 a)) theorem rec_inclt {P : two_quotient → Type} (P0 : Π(a : A), P (incl0 a))
(P1 : Π⦃a a' : A⦄ (s : R a a'), P0 a =[incl1 s] P0 a') (P1 : Π⦃a a' : A⦄ (s : R a a'), P0 a =[incl1 s] P0 a')
(P2 : Π⦃a a' : A⦄ ⦃t t' : T a a'⦄ (q : Q t t'), (P2 : Π⦃a a' : A⦄ ⦃t t' : T a a'⦄ (q : Q t t'),
change_path (incl2 q) (e_closure.elimo incl1 P1 t) = e_closure.elimo incl1 P1 t') change_path (incl2 q) (e_closure.elimo incl1 P1 t) = e_closure.elimo incl1 P1 t')
⦃a a' : A⦄ (t : T a a') : apdo (rec P0 P1 P2) (inclt t) = e_closure.elimo incl1 P1 t := ⦃a a' : A⦄ (t : T a a') : apdo (rec P0 P1 P2) (inclt t) = e_closure.elimo incl1 P1 t :=
rec_inclt _ _ _ _ _ t rec_inclt _ _ _ t
protected definition elim {P : Type} (P0 : A → P) protected definition elim {P : Type} (P0 : A → P)
(P1 : Π⦃a a' : A⦄ (s : R a a'), P0 a = P0 a') (P1 : Π⦃a a' : A⦄ (s : R a a'), P0 a = P0 a')
@ -437,15 +439,15 @@ namespace two_quotient
: square (ap02 (elim P0 P1 P2) (incl2 q)) (P2 q) (elim_inclt P2 t) (elim_inclt P2 t') := : square (ap02 (elim P0 P1 P2) (incl2 q)) (P2 q) (elim_inclt P2 t) (elim_inclt P2 t') :=
begin begin
rewrite [↑[incl2,elim],ap_eq_of_con_inv_eq_idp], rewrite [↑[incl2,elim],ap_eq_of_con_inv_eq_idp],
xrewrite [eq_top_of_square (elim_incl2 R Q2 P0 P1 (elim_1 A R Q P P0 P1 P2) (Qmk R q))], xrewrite [eq_top_of_square (elim_incl2 P0 P1 (elim_1 A R Q P P0 P1 P2) (Qmk R q))],
xrewrite [{simple_two_quotient.elim_inclt R Q2 (elim_1 A R Q P P0 P1 P2) xrewrite [{simple_two_quotient.elim_inclt (elim_1 A R Q P P0 P1 P2)
(t ⬝r t'⁻¹ʳ)} (t ⬝r t'⁻¹ʳ)}
idpath (ap_con (simple_two_quotient.elim R Q2 P0 P1 (elim_1 A R Q P P0 P1 P2)) idpath (ap_con (simple_two_quotient.elim P0 P1 (elim_1 A R Q P P0 P1 P2))
(inclt t) (inclt t')⁻¹ ⬝ (inclt t) (inclt t')⁻¹ ⬝
(simple_two_quotient.elim_inclt R Q2 (elim_1 A R Q P P0 P1 P2) t ◾ (simple_two_quotient.elim_inclt (elim_1 A R Q P P0 P1 P2) t ◾
(ap_inv (simple_two_quotient.elim R Q2 P0 P1 (elim_1 A R Q P P0 P1 P2)) (ap_inv (simple_two_quotient.elim P0 P1 (elim_1 A R Q P P0 P1 P2))
(inclt t') ⬝ (inclt t') ⬝
inverse2 (simple_two_quotient.elim_inclt R Q2 (elim_1 A R Q P P0 P1 P2) t')))),▸*], inverse2 (simple_two_quotient.elim_inclt (elim_1 A R Q P P0 P1 P2) t')))),▸*],
rewrite [-con.assoc _ _ (con_inv_eq_idp _),-con.assoc _ _ (_ ◾ _),con.assoc _ _ (ap_con _ _ _), rewrite [-con.assoc _ _ (con_inv_eq_idp _),-con.assoc _ _ (_ ◾ _),con.assoc _ _ (ap_con _ _ _),
con.left_inv,↑whisker_left,con2_con_con2,-con.assoc (ap_inv _ _)⁻¹, con.left_inv,↑whisker_left,con2_con_con2,-con.assoc (ap_inv _ _)⁻¹,
con.left_inv,+idp_con,eq_of_con_inv_eq_idp_con2], con.left_inv,+idp_con,eq_of_con_inv_eq_idp_con2],