feat(hott): add recursor to refl_quotient
This commit is contained in:
parent
ae92e8c94d
commit
fe8a858d79
5 changed files with 45 additions and 57 deletions
|
@ -22,6 +22,7 @@ namespace e_closure
|
||||||
infix ` ⬝r `:75 := e_closure.trans
|
infix ` ⬝r `:75 := e_closure.trans
|
||||||
postfix `⁻¹ʳ`:(max+10) := e_closure.symm
|
postfix `⁻¹ʳ`:(max+10) := e_closure.symm
|
||||||
notation `[`:max a `]`:0 := e_closure.of_rel a
|
notation `[`:max a `]`:0 := e_closure.of_rel a
|
||||||
|
notation `<`:max p `>`:0 := e_closure.of_path _ p
|
||||||
abbreviation rfl {A : Type} {R : A → A → Type} {a : A} := of_path R (idpath a)
|
abbreviation rfl {A : Type} {R : A → A → Type} {a : A} := of_path R (idpath a)
|
||||||
end e_closure
|
end e_closure
|
||||||
open e_closure
|
open e_closure
|
||||||
|
@ -57,21 +58,6 @@ section
|
||||||
exact ap_con g (e_closure.elim e r) (e_closure.elim e r') ⬝ (IH₁ ◾ IH₂)
|
exact ap_con g (e_closure.elim e r) (e_closure.elim e r') ⬝ (IH₁ ◾ IH₂)
|
||||||
end
|
end
|
||||||
|
|
||||||
/- definition ap_e_closure_elim_h_inv [unfold_full] {B C : Type} {f : A → B} {g : B → C}
|
|
||||||
(e : Π⦃a a' : A⦄, R a a' → f a = f a')
|
|
||||||
{e' : Π⦃a a' : A⦄, R a a' → g (f a) = g (f a')}
|
|
||||||
(p : Π⦃a a' : A⦄ (s : R a a'), ap g (e s) = e' s) (t : T a a')
|
|
||||||
: ap_e_closure_elim_h e p t⁻¹ʳ = ap_inv g (e_closure.elim e t) ⬝ (ap_e_closure_elim_h e p t)⁻² :=
|
|
||||||
by reflexivity
|
|
||||||
|
|
||||||
definition ap_e_closure_elim_h_con [unfold_full] {B C : Type} {f : A → B} {g : B → C}
|
|
||||||
(e : Π⦃a a' : A⦄, R a a' → f a = f a')
|
|
||||||
{e' : Π⦃a a' : A⦄, R a a' → g (f a) = g (f a')}
|
|
||||||
(p : Π⦃a a' : A⦄ (s : R a a'), ap g (e s) = e' s) (t : T a a') (t' : T a' a'')
|
|
||||||
: ap_e_closure_elim_h e p (t ⬝r t') = ap_con g (e_closure.elim e t) (e_closure.elim e t') ⬝
|
|
||||||
(ap_e_closure_elim_h e p t ◾ ap_e_closure_elim_h e p t') :=
|
|
||||||
by reflexivity-/
|
|
||||||
|
|
||||||
definition ap_e_closure_elim [unfold 10] {B C : Type} {f : A → B} (g : B → C)
|
definition ap_e_closure_elim [unfold 10] {B C : Type} {f : A → B} (g : B → C)
|
||||||
(e : Π⦃a a' : A⦄, R a a' → f a = f a') (t : T a a')
|
(e : Π⦃a a' : A⦄, R a a' → f a = f a') (t : T a a')
|
||||||
: ap g (e_closure.elim e t) = e_closure.elim (λa a' r, ap g (e r)) t :=
|
: ap g (e_closure.elim e t) = e_closure.elim (λa a' r, ap g (e r)) t :=
|
||||||
|
@ -141,6 +127,7 @@ section
|
||||||
intro a a' a'' t t', exact t ⬝r t',
|
intro a a' a'' t t', exact t ⬝r t',
|
||||||
end
|
end
|
||||||
|
|
||||||
|
/-
|
||||||
definition e_closure.transport_left {f : A → B} (e : Π⦃a a' : A⦄, R a a' → f a = f a')
|
definition e_closure.transport_left {f : A → B} (e : Π⦃a a' : A⦄, R a a' → f a = f a')
|
||||||
(t : e_closure R a a') (p : a = a'')
|
(t : e_closure R a a') (p : a = a'')
|
||||||
: e_closure.elim e (p ▸ t) = (ap f p)⁻¹ ⬝ e_closure.elim e t :=
|
: e_closure.elim e (p ▸ t) = (ap f p)⁻¹ ⬝ e_closure.elim e t :=
|
||||||
|
@ -155,6 +142,7 @@ section
|
||||||
(t : e_closure R a a) (p : a = a')
|
(t : e_closure R a a) (p : a = a')
|
||||||
: e_closure.elim e (p ▸ t) = (ap f p)⁻¹ ⬝ e_closure.elim e t ⬝ (ap f p) :=
|
: e_closure.elim e (p ▸ t) = (ap f p)⁻¹ ⬝ e_closure.elim e t ⬝ (ap f p) :=
|
||||||
by induction p; esimp; exact !idp_con⁻¹
|
by induction p; esimp; exact !idp_con⁻¹
|
||||||
|
-/
|
||||||
|
|
||||||
/- dependent elimination -/
|
/- dependent elimination -/
|
||||||
|
|
||||||
|
|
|
@ -14,9 +14,13 @@ hits related to homotopy theory are defined in
|
||||||
|
|
||||||
Files in this folder:
|
Files in this folder:
|
||||||
|
|
||||||
* [quotient](quotient.hlean) (quotients, primitive)
|
* [quotient](quotient.hlean): quotients, primitive
|
||||||
* [trunc](trunc.hlean) (truncation, primitive)
|
* [trunc](trunc.hlean): truncation, primitive
|
||||||
* [colimit](colimit.hlean) (Colimits of arbitrary diagrams and sequential colimits, defined using quotients)
|
* [colimit](colimit.hlean): Colimits of arbitrary diagrams and sequential colimits, defined using quotients
|
||||||
* [pushout](pushout.hlean) (Pushouts, defined using quotients)
|
* [pushout](pushout.hlean): Pushouts, defined using quotients
|
||||||
* [coeq](coeq.hlean) (Co-equalizers, defined using quotients)
|
* [coeq](coeq.hlean): Co-equalizers, defined using quotients
|
||||||
* [set_quotient](set_quotient.hlean) (Set-quotients, defined using quotients and set-truncation)
|
* [set_quotient](set_quotient.hlean): Set-quotients, defined using quotients and set-truncation
|
||||||
|
|
||||||
|
The following hits have also 2-constructors. They are defined only using quotients.
|
||||||
|
* [two_quotient](two_quotient.hlean): Quotients where you can also specify 2-paths. These are used for all hits which have 2-constructors, and they are almost fully general for such hits, as long as they are nonrecursive
|
||||||
|
* [refl_quotient](refl_quotient.hlean): Quotients where you can also specify 2-paths
|
|
@ -20,7 +20,7 @@ section
|
||||||
open refl_quotient_Q
|
open refl_quotient_Q
|
||||||
local abbreviation Q := refl_quotient_Q
|
local abbreviation Q := refl_quotient_Q
|
||||||
|
|
||||||
definition refl_quotient : Type := simple_two_quotient R Q -- TODO: define this in root namespace
|
definition refl_quotient : Type := simple_two_quotient R Q
|
||||||
|
|
||||||
definition rclass_of (a : A) : refl_quotient := incl0 R Q a
|
definition rclass_of (a : A) : refl_quotient := incl0 R Q a
|
||||||
definition req_of_rel ⦃a a' : A⦄ (r : R a a') : rclass_of a = rclass_of a' :=
|
definition req_of_rel ⦃a a' : A⦄ (r : R a a') : rclass_of a = rclass_of a' :=
|
||||||
|
@ -29,32 +29,26 @@ section
|
||||||
definition pρ (a : A) : req_of_rel (ρ a) = idp :=
|
definition pρ (a : A) : req_of_rel (ρ a) = idp :=
|
||||||
incl2 R Q (Qmk a)
|
incl2 R Q (Qmk a)
|
||||||
|
|
||||||
-- protected definition rec {P : refl_quotient → Type}
|
protected definition rec {P : refl_quotient → Type} (Pc : Π(a : A), P (rclass_of a))
|
||||||
-- (Pc : Π(a : A), P (rclass_of a))
|
(Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a =[req_of_rel H] Pc a')
|
||||||
-- (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a =[req_of_rel H] Pc a')
|
(Pr : Π(a : A), change_path (pρ a) (Pp (ρ a)) = idpo) (x : refl_quotient) : P x :=
|
||||||
-- (Pr : Π(a : A), Pp (ρ a) =[pρ a] idpo)
|
begin
|
||||||
-- (x : refl_quotient) : P x :=
|
induction x,
|
||||||
-- sorry
|
exact Pc a,
|
||||||
|
exact Pp s,
|
||||||
|
induction q, apply Pr
|
||||||
|
end
|
||||||
|
|
||||||
-- protected definition rec_on [reducible] {P : refl_quotient → Type}
|
protected definition rec_on [reducible] {P : refl_quotient → Type} (x : refl_quotient)
|
||||||
-- (Pc : Π(a : A), P (rclass_of a))
|
(Pc : Π(a : A), P (rclass_of a)) (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a =[req_of_rel H] Pc a')
|
||||||
-- (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a =[req_of_rel H] Pc a')
|
(Pr : Π(a : A), change_path (pρ a) (Pp (ρ a)) = idpo) : P x :=
|
||||||
-- (Pr : Π(a : A), Pp (ρ a) =[pρ a] idpo) : P y :=
|
rec Pc Pp Pr x
|
||||||
-- rec Pinl Pinr Pglue y
|
|
||||||
|
|
||||||
-- definition rec_req_of_rel {P : Type} {P : refl_quotient → Type}
|
definition rec_req_of_rel {P : Type} {P : refl_quotient → Type} (Pc : Π(a : A), P (rclass_of a))
|
||||||
-- (Pc : Π(a : A), P (rclass_of a))
|
(Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a =[req_of_rel H] Pc a')
|
||||||
-- (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a =[req_of_rel H] Pc a')
|
(Pr : Π(a : A), change_path (pρ a) (Pp (ρ a)) = idpo) ⦃a a' : A⦄ (r : R a a')
|
||||||
-- (Pr : Π(a : A), Pp (ρ a) =[pρ a] idpo)
|
: apdo (rec Pc Pp Pr) (req_of_rel r) = Pp r :=
|
||||||
-- ⦃a a' : A⦄ (r : R a a') : apdo (rec Pc Pp Pr) (req_of_rel r) = Pp r :=
|
!rec_incl1
|
||||||
-- !rec_incl1
|
|
||||||
|
|
||||||
-- theorem rec_pρ {P : Type} {P : refl_quotient → Type}
|
|
||||||
-- (Pc : Π(a : A), P (rclass_of a))
|
|
||||||
-- (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a =[req_of_rel H] Pc a')
|
|
||||||
-- (Pr : Π(a : A), Pp (ρ a) =[pρ a] idpo) (a : A)
|
|
||||||
-- : square (ap02 (rec Pc Pp Pr) (pρ a)) (Pr a) (elim_req_of_rel Pr (ρ a)) idp :=
|
|
||||||
-- !rec_incl2
|
|
||||||
|
|
||||||
protected definition elim {P : Type} (Pc : Π(a : A), P)
|
protected definition elim {P : Type} (Pc : Π(a : A), P)
|
||||||
(Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a = Pc a') (Pr : Π(a : A), Pp (ρ a) = idp)
|
(Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a = Pc a') (Pr : Π(a : A), Pp (ρ a) = idp)
|
||||||
|
@ -84,7 +78,7 @@ end
|
||||||
end refl_quotient
|
end refl_quotient
|
||||||
|
|
||||||
attribute refl_quotient.rclass_of [constructor]
|
attribute refl_quotient.rclass_of [constructor]
|
||||||
attribute /-refl_quotient.rec-/ refl_quotient.elim [unfold 8] [recursor 8]
|
attribute refl_quotient.rec refl_quotient.elim [unfold 8] [recursor 8]
|
||||||
--attribute refl_quotient.elim_type [unfold 9]
|
--attribute refl_quotient.elim_type [unfold 9]
|
||||||
attribute /-refl_quotient.rec_on-/ refl_quotient.elim_on [unfold 5]
|
attribute refl_quotient.rec_on refl_quotient.elim_on [unfold 5]
|
||||||
--attribute refl_quotient.elim_type_on [unfold 6]
|
--attribute refl_quotient.elim_type_on [unfold 6]
|
||||||
|
|
|
@ -34,7 +34,7 @@ section
|
||||||
{ intro x', apply Pt},
|
{ intro x', apply Pt},
|
||||||
{ intro y, fapply (quotient.rec_on y),
|
{ intro y, fapply (quotient.rec_on y),
|
||||||
{ exact Pc},
|
{ exact Pc},
|
||||||
{ intros, apply equiv.to_inv !(pathover_compose _ tr), apply Pp}}
|
{ intros, exact pathover_of_pathover_ap P tr (Pp H)}}
|
||||||
end
|
end
|
||||||
|
|
||||||
protected definition rec_on [reducible] {P : set_quotient → Type} (x : set_quotient)
|
protected definition rec_on [reducible] {P : set_quotient → Type} (x : set_quotient)
|
||||||
|
|
|
@ -133,6 +133,7 @@ namespace simple_two_quotient
|
||||||
local attribute simple_two_quotient f i D incl0 aux incl1 incl2' inclt [reducible]
|
local attribute simple_two_quotient f i D incl0 aux incl1 incl2' inclt [reducible]
|
||||||
local attribute i aux incl0 [constructor]
|
local attribute i aux incl0 [constructor]
|
||||||
|
|
||||||
|
parameters {R Q}
|
||||||
protected definition rec {P : D → Type} (P0 : Π(a : A), P (incl0 a))
|
protected definition rec {P : D → Type} (P0 : Π(a : A), P (incl0 a))
|
||||||
(P1 : Π⦃a a' : A⦄ (s : R a a'), P0 a =[incl1 s] P0 a')
|
(P1 : Π⦃a a' : A⦄ (s : R a a'), P0 a =[incl1 s] P0 a')
|
||||||
(P2 : Π⦃a : A⦄ ⦃r : T a a⦄ (q : Q r),
|
(P2 : Π⦃a : A⦄ ⦃r : T a a⦄ (q : Q r),
|
||||||
|
@ -358,6 +359,7 @@ namespace two_quotient
|
||||||
definition incl2 (q : Q t t') : inclt t = inclt t' :=
|
definition incl2 (q : Q t t') : inclt t = inclt t' :=
|
||||||
eq_of_con_inv_eq_idp (incl2 _ _ (Qmk R q))
|
eq_of_con_inv_eq_idp (incl2 _ _ (Qmk R q))
|
||||||
|
|
||||||
|
parameters {R Q}
|
||||||
protected definition rec {P : two_quotient → Type} (P0 : Π(a : A), P (incl0 a))
|
protected definition rec {P : two_quotient → Type} (P0 : Π(a : A), P (incl0 a))
|
||||||
(P1 : Π⦃a a' : A⦄ (s : R a a'), P0 a =[incl1 s] P0 a')
|
(P1 : Π⦃a a' : A⦄ (s : R a a'), P0 a =[incl1 s] P0 a')
|
||||||
(P2 : Π⦃a a' : A⦄ ⦃t t' : T a a'⦄ (q : Q t t'),
|
(P2 : Π⦃a a' : A⦄ ⦃t t' : T a a'⦄ (q : Q t t'),
|
||||||
|
@ -389,14 +391,14 @@ namespace two_quotient
|
||||||
(P2 : Π⦃a a' : A⦄ ⦃t t' : T a a'⦄ (q : Q t t'),
|
(P2 : Π⦃a a' : A⦄ ⦃t t' : T a a'⦄ (q : Q t t'),
|
||||||
change_path (incl2 q) (e_closure.elimo incl1 P1 t) = e_closure.elimo incl1 P1 t')
|
change_path (incl2 q) (e_closure.elimo incl1 P1 t) = e_closure.elimo incl1 P1 t')
|
||||||
⦃a a' : A⦄ (s : R a a') : apdo (rec P0 P1 P2) (incl1 s) = P1 s :=
|
⦃a a' : A⦄ (s : R a a') : apdo (rec P0 P1 P2) (incl1 s) = P1 s :=
|
||||||
rec_incl1 _ _ _ _ _ s
|
rec_incl1 _ _ _ s
|
||||||
|
|
||||||
theorem rec_inclt {P : two_quotient → Type} (P0 : Π(a : A), P (incl0 a))
|
theorem rec_inclt {P : two_quotient → Type} (P0 : Π(a : A), P (incl0 a))
|
||||||
(P1 : Π⦃a a' : A⦄ (s : R a a'), P0 a =[incl1 s] P0 a')
|
(P1 : Π⦃a a' : A⦄ (s : R a a'), P0 a =[incl1 s] P0 a')
|
||||||
(P2 : Π⦃a a' : A⦄ ⦃t t' : T a a'⦄ (q : Q t t'),
|
(P2 : Π⦃a a' : A⦄ ⦃t t' : T a a'⦄ (q : Q t t'),
|
||||||
change_path (incl2 q) (e_closure.elimo incl1 P1 t) = e_closure.elimo incl1 P1 t')
|
change_path (incl2 q) (e_closure.elimo incl1 P1 t) = e_closure.elimo incl1 P1 t')
|
||||||
⦃a a' : A⦄ (t : T a a') : apdo (rec P0 P1 P2) (inclt t) = e_closure.elimo incl1 P1 t :=
|
⦃a a' : A⦄ (t : T a a') : apdo (rec P0 P1 P2) (inclt t) = e_closure.elimo incl1 P1 t :=
|
||||||
rec_inclt _ _ _ _ _ t
|
rec_inclt _ _ _ t
|
||||||
|
|
||||||
protected definition elim {P : Type} (P0 : A → P)
|
protected definition elim {P : Type} (P0 : A → P)
|
||||||
(P1 : Π⦃a a' : A⦄ (s : R a a'), P0 a = P0 a')
|
(P1 : Π⦃a a' : A⦄ (s : R a a'), P0 a = P0 a')
|
||||||
|
@ -437,15 +439,15 @@ namespace two_quotient
|
||||||
: square (ap02 (elim P0 P1 P2) (incl2 q)) (P2 q) (elim_inclt P2 t) (elim_inclt P2 t') :=
|
: square (ap02 (elim P0 P1 P2) (incl2 q)) (P2 q) (elim_inclt P2 t) (elim_inclt P2 t') :=
|
||||||
begin
|
begin
|
||||||
rewrite [↑[incl2,elim],ap_eq_of_con_inv_eq_idp],
|
rewrite [↑[incl2,elim],ap_eq_of_con_inv_eq_idp],
|
||||||
xrewrite [eq_top_of_square (elim_incl2 R Q2 P0 P1 (elim_1 A R Q P P0 P1 P2) (Qmk R q))],
|
xrewrite [eq_top_of_square (elim_incl2 P0 P1 (elim_1 A R Q P P0 P1 P2) (Qmk R q))],
|
||||||
xrewrite [{simple_two_quotient.elim_inclt R Q2 (elim_1 A R Q P P0 P1 P2)
|
xrewrite [{simple_two_quotient.elim_inclt (elim_1 A R Q P P0 P1 P2)
|
||||||
(t ⬝r t'⁻¹ʳ)}
|
(t ⬝r t'⁻¹ʳ)}
|
||||||
idpath (ap_con (simple_two_quotient.elim R Q2 P0 P1 (elim_1 A R Q P P0 P1 P2))
|
idpath (ap_con (simple_two_quotient.elim P0 P1 (elim_1 A R Q P P0 P1 P2))
|
||||||
(inclt t) (inclt t')⁻¹ ⬝
|
(inclt t) (inclt t')⁻¹ ⬝
|
||||||
(simple_two_quotient.elim_inclt R Q2 (elim_1 A R Q P P0 P1 P2) t ◾
|
(simple_two_quotient.elim_inclt (elim_1 A R Q P P0 P1 P2) t ◾
|
||||||
(ap_inv (simple_two_quotient.elim R Q2 P0 P1 (elim_1 A R Q P P0 P1 P2))
|
(ap_inv (simple_two_quotient.elim P0 P1 (elim_1 A R Q P P0 P1 P2))
|
||||||
(inclt t') ⬝
|
(inclt t') ⬝
|
||||||
inverse2 (simple_two_quotient.elim_inclt R Q2 (elim_1 A R Q P P0 P1 P2) t')))),▸*],
|
inverse2 (simple_two_quotient.elim_inclt (elim_1 A R Q P P0 P1 P2) t')))),▸*],
|
||||||
rewrite [-con.assoc _ _ (con_inv_eq_idp _),-con.assoc _ _ (_ ◾ _),con.assoc _ _ (ap_con _ _ _),
|
rewrite [-con.assoc _ _ (con_inv_eq_idp _),-con.assoc _ _ (_ ◾ _),con.assoc _ _ (ap_con _ _ _),
|
||||||
con.left_inv,↑whisker_left,con2_con_con2,-con.assoc (ap_inv _ _)⁻¹,
|
con.left_inv,↑whisker_left,con2_con_con2,-con.assoc (ap_inv _ _)⁻¹,
|
||||||
con.left_inv,+idp_con,eq_of_con_inv_eq_idp_con2],
|
con.left_inv,+idp_con,eq_of_con_inv_eq_idp_con2],
|
||||||
|
|
Loading…
Reference in a new issue