Remark: on Windows, Ctrl-D does not seem to work.
So, this commit also changes the Lean startup message.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
When LEAN_THREAD_UNSAFE=ON, we:
- Do not run tests at tests/lua/threads
- Disable thread object at Lua API
- par tactical becomes an alias for interleave
- Disable some unit tests that use threads
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This is a very convenient feature for interrupting non-terminating user scripts.
Before this commit, the user had to manually invoke check_interrupt() in potentially expensive loops. Now, this is not needed anymore.
Remark: we still have to check whether this trick works with LuaJIT or not.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This fix tries to fix two failures on our unit tests.
tests/kernel/normalizer
tests/kernel/type_checker
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
operator bool() may produce unwanted conversions.
For example, we had the following bug in the code base.
...
object const & obj = find_object(const_name(n));
if (obj && obj.is_builtin() && obj.get_name() == n)
...
obj.get_name() has type lean::name
n has type lean::expr
Both have 'operator bool()', then the compiler uses the operator to
convert them to Boolean, and then compare the result.
Of course, this is not our intention.
After this commit, the compiler correctly signs the error.
The correct code is
...
object const & obj = find_object(const_name(n));
if (obj && obj.is_builtin() && obj.get_name() == const_name(n))
...
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
When using tactics for proving theorems, a common pattern is
Theorem T : <proposition> := _.
apply <tactic>.
...
done.
This commit allows the user to write the simplified form:
Theorem T : <proposition>.
apply <tactic>.
...
done.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
Recursive functions that may go very deep should invoke the function check_stack. It throws an exception if the amount of stack space is limited.
The function check_system() is syntax sugar for
check_interrupted();
check_stack();
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
Proof/Cex builders and tactics implemented in Lua had a "strong reference" to script_state. If they are stored in the Lua state, then we get a cyclic reference.
That is, script_state points to these objects, and they point back to script_state.
To avoid this memory leak, this commit defines a weak reference for script_state objects. The Proof/Cex builders and tactics now store a weak reference to the Lua state.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
There was a bug in the app_rewriter1_tst. If we apply the ADD_COMM RW to
f(0), then the result should be f(0) since there is nothing to do for
ADD_COMM.
f(0) = f(0)
The proof for this equality should be Refl(Nat, f(0)). But it was
Refl(Nat -> Nat, f)
which is wrong. Somehow, the previous kernel didn't detect this type
mismatch and recent changes of the kernel found the problem.
I fixed the bug and re-enable the test as it was.
rewrite_* functions take the rewriting results of the sub-components and
construct the rewriting result for the main component.
For instance, rewrite_app function takes env, ctx, and the value v s.t.
v = (e_0 e_1 ... e_n)
and the rewriting results for e_i's as a vector(buffer)
(e'_0, pf_0 -- proof of e_0 = e'_0)
(e'_1, pf_1 -- proof of e_1 = e'_1)
...
(e'_n, pf_n -- proof of e_n = e'_n).
Then rewrite_app function construct the new v'
v' = (e'_0 e'_1 ... e'_n)
and the proof of v = v' which is constructed with pf_i's.
These functions are used in the component rewriters such as app_RW and
let_type_RW, as well as more complicated rewriters such as depth
rewriter.