Commit graph

11 commits

Author SHA1 Message Date
Leonardo de Moura
deb1b3dc79 refactor(library): replace assert-exprs with have-exprs 2016-02-29 11:53:26 -08:00
Jeremy Avigad
12a69bad04 refactor(library/data/finset/basic,library/*): get rid of finset singleton 2015-12-31 15:16:57 -08:00
Leonardo de Moura
49eae56db4 test(library/theories/group_theory): test auto-include in the group theory library 2015-12-13 13:40:54 -08:00
Leonardo de Moura
b94e31a72c refactor(library): remove algebra namespace 2015-12-05 23:50:01 -08:00
Jeremy Avigad
8f815cabc0 refactor(library/data/finset/comb,library/data/set/basic,library/*): rename 'filter' to 'sep' to free up 'set.filter' 2015-08-08 18:10:44 -04:00
Jeremy Avigad
eaf886cb5a refactor(library/algebra/group_bigops,library/*): put group_bigops in 'finset' namespace, in preparation for set versions 2015-08-08 04:23:52 -07:00
Leonardo de Moura
06f20694c8 fix(frontends/lean/builtin_exprs): fixes #768 2015-08-08 04:20:17 -07:00
Leonardo de Moura
8dc2246a83 refactor(library/theories/group_theory/action): improve compilation time 2015-07-30 20:58:38 -07:00
Jeremy Avigad
c9d6cc5255 feat(library/data/{finset,set}): various basic facts 2015-07-25 14:02:44 -04:00
Haitao Zhang
ca895e4901 fix(library/data/finset/partition): improve lemmas on binary partition 2015-07-16 14:13:06 -07:00
Haitao Zhang
a04c6b0c7d feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
  finite cosets and lcoset_type, normalizer for finite groups, coset product
  and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
  Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-15 20:02:11 -07:00