Remark: on Windows, Ctrl-D does not seem to work.
So, this commit also changes the Lean startup message.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
operator bool() may produce unwanted conversions.
For example, we had the following bug in the code base.
...
object const & obj = find_object(const_name(n));
if (obj && obj.is_builtin() && obj.get_name() == n)
...
obj.get_name() has type lean::name
n has type lean::expr
Both have 'operator bool()', then the compiler uses the operator to
convert them to Boolean, and then compare the result.
Of course, this is not our intention.
After this commit, the compiler correctly signs the error.
The correct code is
...
object const & obj = find_object(const_name(n));
if (obj && obj.is_builtin() && obj.get_name() == const_name(n))
...
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
When using tactics for proving theorems, a common pattern is
Theorem T : <proposition> := _.
apply <tactic>.
...
done.
This commit allows the user to write the simplified form:
Theorem T : <proposition>.
apply <tactic>.
...
done.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
In expression code blocks, we do not have to write a "return".
After this commit, the argument of an apply command is a Lua expression instead of a Lua block of code. That is, we can now write
apply (** REPEAT(ORELSE(imp_tactic, conj_tactic, conj_hyp_tactic, assumption_tactic)) **)
instead of
apply (** return REPEAT(ORELSE(imp_tactic, conj_tactic, conj_hyp_tactic, assumption_tactic)) **)
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
For example, after this commit, we can write
simple_tac = REPEAT(ORELSE(imp_tactic, conj_tactic)) .. assumption_tactic
instead of
simple_tac = REPEAT(ORELSE(imp_tactic(), conj_tactic())) .. assumption_tactic()
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
The unlock_guard and exec_unprotected will be useful also for implementing the Lua tactic API.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
The following call sequence is possible:
C++ -> Lua -> C++ -> Lua -> C++
The first block of C++ is the Lean main function.
The main function invokes the Lua interpreter.
The Lua interpreter invokes a C++ Lean API.
Then the Lean API invokes a callback implemented in Lua.
The Lua callback invokes another Lean API.
Now, suppose the Lean API throws an exception.
We want the C++ exception to propagate over the mixed C++/Lua call stack.
We use the clone/rethrow exception idiom to achieve this goal.
Before this commit, the C++ exceptions were converted into strings
using the method what(), and then they were propagated over the Lua
stack using lua_error. A lua_error was then converted into a lua_exception when going back to C++.
This solution was very unsatisfactory, since all C++ exceptions were being converted into a lua_exception, and consequently the structure of the exception was being lost.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
copy_values is not a big if-then-else anymore.
Before this change, whenever we added a new kind of userdata, we would have to update copy_values.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
Lua API is an integral part of Lean. It does *not* have the same status
of external APIs (e.g., Python) we will add in the future.
We will reserve the directory bindings for external APIs for using Lean
as a library.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
The idea is to make it clear that io_state is distinguish it from proof_state, and from leanlua_state.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
The main motivation is to break the remove the dependency frontends/lean <-- bindings/lua.
This dependency is undesirable because we want to expose the frontends/lean parser and pretty printer objects at bindings/lua.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
The new hash code has the property that given expr_cell * c1 and expr_cell * c2,
if c1 != c2 then there is a high propbability that c1->hash_alloc() != c2->hash_alloc().
The structural hash code hash() does not have this property because we may have
c1 != c2, but c1 and c2 are structurally equal.
The new hash code is only compatible with pointer equality.
By compatible we mean, if c1 == c2, then c1->hash_alloc() == c2->hash_alloc().
This property is obvious because hash_alloc() does not have side-effects.
The test tests/lua/big.lua exposes the problem fixed by this commit.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
Instead of having m_interrupted flags in several components. We use a thread_local global variable.
The new approach is much simpler to get right since there is no risk of "forgetting" to propagate
the set_interrupt method to sub-components.
The plan is to support set_interrupt methods and m_interrupted flags only in tactic objects.
We need to support them in tactics and tacticals because we want to implement combinators/tacticals such as (try_for T M) that fails if tactic T does not finish in M ms.
For example, consider the tactic:
try-for (T1 ORELSE T2) 5
It tries the tactic (T1 ORELSE T2) for 5ms.
Thus, if T1 does not finish after 5ms an interrupt request is sent, and T1 is interrupted.
Now, if you do not have a m_interrupted flag marking each tactic, the ORELSE combinator will try T2.
The set_interrupt method for ORELSE tactical should turn on the m_interrupted flag.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
The token }} is a bad delimiter for blocks of Lua script code nested in Lean files.
The problem is that the sequence }} occurs very often in Lua code because Lua uses { and } to build tables/lists/arrays.
Here is an example of Lua code that contains the sequence }}
t = {{1, 2}, {2, 3}, {3, 4}}
In Lean, (* ... *) is used to create comments. Thus, (** ... **) code blocks will not affect
valid Lean files. It also looks reasonably good.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
We need weak references to environment objects because the environment has a reference to the type_checker and the type_checker has a reference back to the environment. Before, we were breaking the cycle using an "environment const &". This was a dangerous hack because the environment smart pointer passed to the type_checker could be on the stack. The weak_ref is much safer.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
The problem is that unique names depend on the order compilation units are initialized. The order of initialization is not specified by the C++ standard. Then, different compilers (or even the same compiler) may produce different initialization orders, and consequently the metavariable prefix is going to be different for different builds. This is not a bug, but it makes unit tests to fail since the output produced by different builds is different for the same input file.
Avoiding unique name feature in the default metavariable prefix avoids this problem.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
For example, this feature is useful when displaying the integer value 10 with coercions enabled. In this case, we want to display "nat_to_int 10" instead of "10".
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>