lean2/library/data/list/basic.lean
2015-04-11 13:52:50 -07:00

474 lines
17 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Parikshit Khanna. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: data.list.basic
Authors: Parikshit Khanna, Jeremy Avigad, Leonardo de Moura
Basic properties of lists.
-/
import logic tools.helper_tactics data.nat.basic algebra.function
open eq.ops helper_tactics nat prod function
inductive list (T : Type) : Type :=
| nil {} : list T
| cons : T → list T → list T
namespace list
notation h :: t := cons h t
notation `[` l:(foldr `,` (h t, cons h t) nil `]`) := l
variable {T : Type}
/- append -/
definition append : list T → list T → list T
| [] l := l
| (h :: s) t := h :: (append s t)
notation l₁ ++ l₂ := append l₁ l₂
theorem append_nil_left (t : list T) : [] ++ t = t
theorem append_cons (x : T) (s t : list T) : (x::s) ++ t = x::(s ++ t)
theorem append_nil_right : ∀ (t : list T), t ++ [] = t
| [] := rfl
| (a :: l) := calc
(a :: l) ++ [] = a :: (l ++ []) : rfl
... = a :: l : append_nil_right l
theorem append.assoc : ∀ (s t u : list T), s ++ t ++ u = s ++ (t ++ u)
| [] t u := rfl
| (a :: l) t u :=
show a :: (l ++ t ++ u) = (a :: l) ++ (t ++ u),
by rewrite (append.assoc l t u)
/- length -/
definition length : list T → nat
| [] := 0
| (a :: l) := length l + 1
theorem length_nil : length (@nil T) = 0
theorem length_cons (x : T) (t : list T) : length (x::t) = length t + 1
theorem length_append : ∀ (s t : list T), length (s ++ t) = length s + length t
| [] t := calc
length ([] ++ t) = length t : rfl
... = length [] + length t : zero_add
| (a :: s) t := calc
length (a :: s ++ t) = length (s ++ t) + 1 : rfl
... = length s + length t + 1 : length_append
... = (length s + 1) + length t : add.succ_left
... = length (a :: s) + length t : rfl
theorem eq_nil_of_length_eq_zero : ∀ {l : list T}, length l = 0 → l = []
| [] H := rfl
| (a::s) H := nat.no_confusion H
-- add_rewrite length_nil length_cons
/- concat -/
definition concat : Π (x : T), list T → list T
| a [] := [a]
| a (b :: l) := b :: concat a l
theorem concat_nil (x : T) : concat x [] = [x]
theorem concat_cons (x y : T) (l : list T) : concat x (y::l) = y::(concat x l)
theorem concat_eq_append (a : T) : ∀ (l : list T), concat a l = l ++ [a]
| [] := rfl
| (b :: l) :=
show b :: (concat a l) = (b :: l) ++ (a :: []),
by rewrite concat_eq_append
-- add_rewrite append_nil append_cons
/- reverse -/
definition reverse : list T → list T
| [] := []
| (a :: l) := concat a (reverse l)
theorem reverse_nil : reverse (@nil T) = []
theorem reverse_cons (x : T) (l : list T) : reverse (x::l) = concat x (reverse l)
theorem reverse_singleton (x : T) : reverse [x] = [x]
theorem reverse_append : ∀ (s t : list T), reverse (s ++ t) = (reverse t) ++ (reverse s)
| [] t2 := calc
reverse ([] ++ t2) = reverse t2 : rfl
... = (reverse t2) ++ [] : append_nil_right
... = (reverse t2) ++ (reverse []) : by rewrite reverse_nil
| (a2 :: s2) t2 := calc
reverse ((a2 :: s2) ++ t2) = concat a2 (reverse (s2 ++ t2)) : rfl
... = concat a2 (reverse t2 ++ reverse s2) : reverse_append
... = (reverse t2 ++ reverse s2) ++ [a2] : concat_eq_append
... = reverse t2 ++ (reverse s2 ++ [a2]) : append.assoc
... = reverse t2 ++ concat a2 (reverse s2) : concat_eq_append
... = reverse t2 ++ reverse (a2 :: s2) : rfl
theorem reverse_reverse : ∀ (l : list T), reverse (reverse l) = l
| [] := rfl
| (a :: l) := calc
reverse (reverse (a :: l)) = reverse (concat a (reverse l)) : rfl
... = reverse (reverse l ++ [a]) : concat_eq_append
... = reverse [a] ++ reverse (reverse l) : reverse_append
... = reverse [a] ++ l : reverse_reverse
... = a :: l : rfl
theorem concat_eq_reverse_cons (x : T) (l : list T) : concat x l = reverse (x :: reverse l) :=
calc
concat x l = concat x (reverse (reverse l)) : reverse_reverse
... = reverse (x :: reverse l) : rfl
/- head and tail -/
definition head [h : inhabited T] : list T → T
| [] := arbitrary T
| (a :: l) := a
theorem head_cons [h : inhabited T] (a : T) (l : list T) : head (a::l) = a
theorem head_append [h : inhabited T] (t : list T) : ∀ {s : list T}, s ≠ [] → head (s ++ t) = head s
| [] H := absurd rfl H
| (a :: s) H :=
show head (a :: (s ++ t)) = head (a :: s),
by rewrite head_cons
definition tail : list T → list T
| [] := []
| (a :: l) := l
theorem tail_nil : tail (@nil T) = []
theorem tail_cons (a : T) (l : list T) : tail (a::l) = l
theorem cons_head_tail [h : inhabited T] {l : list T} : l ≠ [] → (head l)::(tail l) = l :=
list.cases_on l
(assume H : [] ≠ [], absurd rfl H)
(take x l, assume H : x::l ≠ [], rfl)
/- list membership -/
definition mem : T → list T → Prop
| a [] := false
| a (b :: l) := a = b mem a l
notation e ∈ s := mem e s
notation e ∉ s := ¬ e ∈ s
theorem mem_nil (x : T) : x ∈ [] ↔ false :=
iff.rfl
theorem not_mem_nil (x : T) : x ∉ [] :=
iff.mp !mem_nil
theorem mem_cons (x : T) (l : list T) : x ∈ x :: l :=
or.inl rfl
theorem mem_cons_of_mem (y : T) {x : T} {l : list T} : x ∈ l → x ∈ y :: l :=
assume H, or.inr H
theorem mem_cons_iff (x y : T) (l : list T) : x ∈ y::l ↔ (x = y x ∈ l) :=
iff.rfl
theorem eq_or_mem_of_mem_cons {x y : T} {l : list T} : x ∈ y::l → x = y x ∈ l :=
assume h, h
theorem mem_singleton {x a : T} : x ∈ [a] → x = a :=
assume h : x ∈ [a], or.elim (eq_or_mem_of_mem_cons h)
(λ xeqa : x = a, xeqa)
(λ xinn : x ∈ [], absurd xinn !not_mem_nil)
theorem mem_of_mem_cons_of_mem {a b : T} {l : list T} : a ∈ b::l → b ∈ l → a ∈ l :=
assume ainbl binl, or.elim (eq_or_mem_of_mem_cons ainbl)
(λ aeqb : a = b, by rewrite [aeqb]; exact binl)
(λ ainl : a ∈ l, ainl)
theorem mem_or_mem_of_mem_append {x : T} {s t : list T} : x ∈ s ++ t → x ∈ s x ∈ t :=
list.induction_on s or.inr
(take y s,
assume IH : x ∈ s ++ t → x ∈ s x ∈ t,
assume H1 : x ∈ y::s ++ t,
have H2 : x = y x ∈ s ++ t, from H1,
have H3 : x = y x ∈ s x ∈ t, from or_of_or_of_imp_right H2 IH,
iff.elim_right or.assoc H3)
theorem mem_append_of_mem_or_mem {x : T} {s t : list T} : x ∈ s x ∈ t → x ∈ s ++ t :=
list.induction_on s
(take H, or.elim H false.elim (assume H, H))
(take y s,
assume IH : x ∈ s x ∈ t → x ∈ s ++ t,
assume H : x ∈ y::s x ∈ t,
or.elim H
(assume H1,
or.elim (eq_or_mem_of_mem_cons H1)
(take H2 : x = y, or.inl H2)
(take H2 : x ∈ s, or.inr (IH (or.inl H2))))
(assume H1 : x ∈ t, or.inr (IH (or.inr H1))))
theorem mem_append_iff (x : T) (s t : list T) : x ∈ s ++ t ↔ x ∈ s x ∈ t :=
iff.intro mem_or_mem_of_mem_append mem_append_of_mem_or_mem
theorem not_mem_of_not_mem_append_left {x : T} {s t : list T} : x ∉ s++t → x ∉ s :=
λ nxinst xins, absurd (mem_append_of_mem_or_mem (or.inl xins)) nxinst
theorem not_mem_of_not_mem_append_right {x : T} {s t : list T} : x ∉ s++t → x ∉ t :=
λ nxinst xint, absurd (mem_append_of_mem_or_mem (or.inr xint)) nxinst
theorem not_mem_append {x : T} {s t : list T} : x ∉ s → x ∉ t → x ∉ s++t :=
λ nxins nxint xinst, or.elim (mem_or_mem_of_mem_append xinst)
(λ xins, absurd xins nxins)
(λ xint, absurd xint nxint)
local attribute mem [reducible]
local attribute append [reducible]
theorem mem_split {x : T} {l : list T} : x ∈ l → ∃s t : list T, l = s ++ (x::t) :=
list.induction_on l
(take H : x ∈ [], false.elim (iff.elim_left !mem_nil H))
(take y l,
assume IH : x ∈ l → ∃s t : list T, l = s ++ (x::t),
assume H : x ∈ y::l,
or.elim (eq_or_mem_of_mem_cons H)
(assume H1 : x = y,
exists.intro [] (!exists.intro (H1 ▸ rfl)))
(assume H1 : x ∈ l,
obtain s (H2 : ∃t : list T, l = s ++ (x::t)), from IH H1,
obtain t (H3 : l = s ++ (x::t)), from H2,
have H4 : y :: l = (y::s) ++ (x::t),
from H3 ▸ rfl,
!exists.intro (!exists.intro H4)))
theorem mem_append_left {a : T} {l₁ : list T} (l₂ : list T) : a ∈ l₁ → a ∈ l₁ ++ l₂ :=
assume ainl₁, mem_append_of_mem_or_mem (or.inl ainl₁)
theorem mem_append_right {a : T} (l₁ : list T) {l₂ : list T} : a ∈ l₂ → a ∈ l₁ ++ l₂ :=
assume ainl₂, mem_append_of_mem_or_mem (or.inr ainl₂)
definition decidable_mem [instance] [H : decidable_eq T] (x : T) (l : list T) : decidable (x ∈ l) :=
list.rec_on l
(decidable.inr (not_of_iff_false !mem_nil))
(take (h : T) (l : list T) (iH : decidable (x ∈ l)),
show decidable (x ∈ h::l), from
decidable.rec_on iH
(assume Hp : x ∈ l,
decidable.rec_on (H x h)
(assume Heq : x = h,
decidable.inl (or.inl Heq))
(assume Hne : x ≠ h,
decidable.inl (or.inr Hp)))
(assume Hn : ¬x ∈ l,
decidable.rec_on (H x h)
(assume Heq : x = h,
decidable.inl (or.inl Heq))
(assume Hne : x ≠ h,
have H1 : ¬(x = h x ∈ l), from
assume H2 : x = h x ∈ l, or.elim H2
(assume Heq, absurd Heq Hne)
(assume Hp, absurd Hp Hn),
have H2 : ¬x ∈ h::l, from
iff.elim_right (not_iff_not_of_iff !mem_cons_iff) H1,
decidable.inr H2)))
theorem mem_of_ne_of_mem {x y : T} {l : list T} (H₁ : x ≠ y) (H₂ : x ∈ y :: l) : x ∈ l :=
or.elim (eq_or_mem_of_mem_cons H₂) (λe, absurd e H₁) (λr, r)
theorem not_eq_of_not_mem {a b : T} {l : list T} : a ∉ b::l → a ≠ b :=
assume nin aeqb, absurd (or.inl aeqb) nin
theorem not_mem_of_not_mem {a b : T} {l : list T} : a ∉ b::l → a ∉ l :=
assume nin nainl, absurd (or.inr nainl) nin
definition sublist (l₁ l₂ : list T) := ∀ ⦃a : T⦄, a ∈ l₁ → a ∈ l₂
infix `⊆`:50 := sublist
lemma nil_sub (l : list T) : [] ⊆ l :=
λ b i, false.elim (iff.mp (mem_nil b) i)
lemma sub.refl (l : list T) : l ⊆ l :=
λ b i, i
lemma sub.trans {l₁ l₂ l₃ : list T} (H₁ : l₁ ⊆ l₂) (H₂ : l₂ ⊆ l₃) : l₁ ⊆ l₃ :=
λ b i, H₂ (H₁ i)
lemma sub_cons (a : T) (l : list T) : l ⊆ a::l :=
λ b i, or.inr i
lemma cons_sub_cons {l₁ l₂ : list T} (a : T) (s : l₁ ⊆ l₂) : (a::l₁) ⊆ (a::l₂) :=
λ b Hin, or.elim (eq_or_mem_of_mem_cons Hin)
(λ e : b = a, or.inl e)
(λ i : b ∈ l₁, or.inr (s i))
lemma sub_append_left (l₁ l₂ : list T) : l₁ ⊆ l₁++l₂ :=
λ b i, iff.mp' (mem_append_iff b l₁ l₂) (or.inl i)
lemma sub_append_right (l₁ l₂ : list T) : l₂ ⊆ l₁++l₂ :=
λ b i, iff.mp' (mem_append_iff b l₁ l₂) (or.inr i)
lemma sub_cons_of_sub (a : T) {l₁ l₂ : list T} : l₁ ⊆ l₂ → l₁ ⊆ (a::l₂) :=
λ (s : l₁ ⊆ l₂) (x : T) (i : x ∈ l₁), or.inr (s i)
lemma sub_app_of_sub_left (l l₁ l₂ : list T) : l ⊆ l₁ → l ⊆ l₁++l₂ :=
λ (s : l ⊆ l₁) (x : T) (xinl : x ∈ l),
have xinl₁ : x ∈ l₁, from s xinl,
mem_append_of_mem_or_mem (or.inl xinl₁)
lemma sub_app_of_sub_right (l l₁ l₂ : list T) : l ⊆ l₂ → l ⊆ l₁++l₂ :=
λ (s : l ⊆ l₂) (x : T) (xinl : x ∈ l),
have xinl₁ : x ∈ l₂, from s xinl,
mem_append_of_mem_or_mem (or.inr xinl₁)
lemma cons_sub_of_sub_of_mem {a : T} {l m : list T} : a ∈ m → l ⊆ m → a::l ⊆ m :=
λ (ainm : a ∈ m) (lsubm : l ⊆ m) (x : T) (xinal : x ∈ a::l), or.elim (eq_or_mem_of_mem_cons xinal)
(assume xeqa : x = a, eq.rec_on (eq.symm xeqa) ainm)
(assume xinl : x ∈ l, lsubm xinl)
lemma app_sub_of_sub_of_sub {l₁ l₂ l : list T} : l₁ ⊆ l → l₂ ⊆ l → l₁++l₂ ⊆ l :=
λ (l₁subl : l₁ ⊆ l) (l₂subl : l₂ ⊆ l) (x : T) (xinl₁l₂ : x ∈ l₁++l₂),
or.elim (mem_or_mem_of_mem_append xinl₁l₂)
(λ xinl₁ : x ∈ l₁, l₁subl xinl₁)
(λ xinl₂ : x ∈ l₂, l₂subl xinl₂)
/- find -/
section
variable [H : decidable_eq T]
include H
definition find : T → list T → nat
| a [] := 0
| a (b :: l) := if a = b then 0 else succ (find a l)
theorem find_nil (x : T) : find x [] = 0
theorem find_cons (x y : T) (l : list T) : find x (y::l) = if x = y then 0 else succ (find x l)
theorem find.not_mem {l : list T} {x : T} : ¬x ∈ l → find x l = length l :=
list.rec_on l
(assume P₁ : ¬x ∈ [], _)
(take y l,
assume iH : ¬x ∈ l → find x l = length l,
assume P₁ : ¬x ∈ y::l,
have P₂ : ¬(x = y x ∈ l), from iff.elim_right (not_iff_not_of_iff !mem_cons_iff) P₁,
have P₃ : ¬x = y ∧ ¬x ∈ l, from (iff.elim_left not_or_iff_not_and_not P₂),
calc
find x (y::l) = if x = y then 0 else succ (find x l) : !find_cons
... = succ (find x l) : if_neg (and.elim_left P₃)
... = succ (length l) : {iH (and.elim_right P₃)}
... = length (y::l) : !length_cons⁻¹)
end
/- nth element -/
definition nth [h : inhabited T] : list T → nat → T
| [] n := arbitrary T
| (a :: l) 0 := a
| (a :: l) (n+1) := nth l n
theorem nth_zero [h : inhabited T] (a : T) (l : list T) : nth (a :: l) 0 = a
theorem nth_succ [h : inhabited T] (a : T) (l : list T) (n : nat) : nth (a::l) (n+1) = nth l n
open decidable
definition has_decidable_eq {A : Type} [H : decidable_eq A] : ∀ l₁ l₂ : list A, decidable (l₁ = l₂)
| [] [] := inl rfl
| [] (b::l₂) := inr (λ H, list.no_confusion H)
| (a::l₁) [] := inr (λ H, list.no_confusion H)
| (a::l₁) (b::l₂) :=
match H a b with
| inl Hab :=
match has_decidable_eq l₁ l₂ with
| inl He := inl (eq.rec_on Hab (eq.rec_on He rfl))
| inr Hn := inr (λ H, list.no_confusion H (λ Hab Ht, absurd Ht Hn))
end
| inr Hnab := inr (λ H, list.no_confusion H (λ Hab Ht, absurd Hab Hnab))
end
/- quasiequal a l l' means that l' is exactly l, with a added
once somewhere -/
section qeq
variable {A : Type}
inductive qeq (a : A) : list A → list A → Prop :=
| qhead : ∀ l, qeq a l (a::l)
| qcons : ∀ (b : A) {l l' : list A}, qeq a l l' → qeq a (b::l) (b::l')
open qeq
notation l' `≈`:50 a `|` l:50 := qeq a l l'
lemma qeq_app : ∀ (l₁ : list A) (a : A) (l₂ : list A), l₁++(a::l₂) ≈ a|l₁++l₂
| [] a l₂ := qhead a l₂
| (x::xs) a l₂ := qcons x (qeq_app xs a l₂)
lemma mem_head_of_qeq {a : A} {l₁ l₂ : list A} : l₁≈a|l₂ → a ∈ l₁ :=
take q, qeq.induction_on q
(λ l, !mem_cons)
(λ b l l' q r, or.inr r)
lemma mem_tail_of_qeq {a : A} {l₁ l₂ : list A} : l₁≈a|l₂ → ∀ x, x ∈ l₂ → x ∈ l₁ :=
take q, qeq.induction_on q
(λ l x i, or.inr i)
(λ b l l' q r x xinbl, or.elim (eq_or_mem_of_mem_cons xinbl)
(λ xeqb : x = b, xeqb ▸ mem_cons x l')
(λ xinl : x ∈ l, or.inr (r x xinl)))
lemma mem_cons_of_qeq {a : A} {l₁ l₂ : list A} : l₁≈a|l₂ → ∀ x, x ∈ l₁ → x ∈ a::l₂ :=
take q, qeq.induction_on q
(λ l x i, i)
(λ b l l' q r x xinbl', or.elim (eq_or_mem_of_mem_cons xinbl')
(λ xeqb : x = b, xeqb ▸ or.inr (mem_cons x l))
(λ xinl' : x ∈ l', or.elim (eq_or_mem_of_mem_cons (r x xinl'))
(λ xeqa : x = a, xeqa ▸ mem_cons x (b::l))
(λ xinl : x ∈ l, or.inr (or.inr xinl))))
lemma length_eq_of_qeq {a : A} {l₁ l₂ : list A} : l₁≈a|l₂ → length l₁ = succ (length l₂) :=
take q, qeq.induction_on q
(λ l, rfl)
(λ b l l' q r, by rewrite [*length_cons, r])
lemma qeq_of_mem {a : A} {l : list A} : a ∈ l → (∃l', l≈a|l') :=
list.induction_on l
(λ h : a ∈ nil, absurd h (not_mem_nil a))
(λ x xs r ainxxs, or.elim (eq_or_mem_of_mem_cons ainxxs)
(λ aeqx : a = x,
assert aux : ∃ l, x::xs≈x|l, from
exists.intro xs (qhead x xs),
by rewrite aeqx; exact aux)
(λ ainxs : a ∈ xs,
have ex : ∃l', xs ≈ a|l', from r ainxs,
obtain (l' : list A) (q : xs ≈ a|l'), from ex,
have q₂ : x::xs ≈ a | x::l', from qcons x q,
exists.intro (x::l') q₂))
lemma qeq_split {a : A} {l l' : list A} : l'≈a|l → ∃l₁ l₂, l = l₁++l₂ ∧ l' = l₁++(a::l₂) :=
take q, qeq.induction_on q
(λ t,
have aux : t = []++t ∧ a::t = []++(a::t), from and.intro rfl rfl,
exists.intro [] (exists.intro t aux))
(λ b t t' q r,
obtain (l₁ l₂ : list A) (h : t = l₁++l₂ ∧ t' = l₁++(a::l₂)), from r,
have aux : b::t = (b::l₁)++l₂ ∧ b::t' = (b::l₁)++(a::l₂),
begin
rewrite [and.elim_right h, and.elim_left h],
exact (and.intro rfl rfl)
end,
exists.intro (b::l₁) (exists.intro l₂ aux))
lemma sub_of_mem_of_sub_of_qeq {a : A} {l : list A} {u v : list A} : a ∉ l → a::l ⊆ v → v≈a|u → l ⊆ u :=
λ (nainl : a ∉ l) (s : a::l ⊆ v) (q : v≈a|u) (x : A) (xinl : x ∈ l),
have xinv : x ∈ v, from s (or.inr xinl),
have xinau : x ∈ a::u, from mem_cons_of_qeq q x xinv,
or.elim (eq_or_mem_of_mem_cons xinau)
(λ xeqa : x = a, absurd (xeqa ▸ xinl) nainl)
(λ xinu : x ∈ u, xinu)
end qeq
end list
attribute list.has_decidable_eq [instance]
attribute list.decidable_mem [instance]