77 lines
2.3 KiB
Text
77 lines
2.3 KiB
Text
import data.fintype data.list data.sum data.nat
|
|
open option list nat
|
|
|
|
structure countable [class] (A : Type) :=
|
|
(pickle : A → nat) (unpickle : nat → option A) (picklek : ∀ a, unpickle (pickle a) = some a)
|
|
|
|
open countable
|
|
|
|
definition countable_fintype [instance] {A : Type} [h₁ : fintype A] [h₂ : decidable_eq A] : countable A :=
|
|
countable.mk
|
|
(λ a, find a (elements_of A))
|
|
(λ n, nth (elements_of A) n)
|
|
(λ a, find_nth (fintype.complete a))
|
|
|
|
definition countable_nat [instance] : countable nat :=
|
|
countable.mk (λ a, a) (λ n, some n) (λ a, rfl)
|
|
|
|
definition countable_option [instance] {A : Type} [h : countable A] : countable (option A) :=
|
|
countable.mk
|
|
(λ o, match o with
|
|
| some a := succ (pickle a)
|
|
| none := 0
|
|
end)
|
|
(λ n, if n = 0 then some none else some (unpickle A (pred n)))
|
|
(λ o,
|
|
begin
|
|
cases o with [a],
|
|
begin esimp end,
|
|
begin esimp, rewrite [if_neg !succ_ne_zero, pred_succ, countable.picklek] end
|
|
end)
|
|
|
|
section sum
|
|
variables {A B : Type}
|
|
variables [h₁ : countable A] [h₂ : countable B]
|
|
include h₁ h₂
|
|
|
|
definition pickle_sum : sum A B → nat
|
|
| (sum.inl a) := 2 * pickle a
|
|
| (sum.inr b) := 2 * pickle b + 1
|
|
|
|
definition unpickle_sum (n : nat) : option (sum A B) :=
|
|
if n mod 2 = 0 then
|
|
match unpickle A (n div 2) with
|
|
| some a := some (sum.inl a)
|
|
| none := none
|
|
end
|
|
else
|
|
match unpickle B ((n - 1) div 2) with
|
|
| some b := some (sum.inr b)
|
|
| none := none
|
|
end
|
|
|
|
open decidable
|
|
theorem unpickle_pickle_sum : ∀ s : sum A B, unpickle_sum (pickle_sum s) = some s
|
|
| (sum.inl a) :=
|
|
assert aux : 2 > 0, from dec_trivial,
|
|
begin
|
|
esimp [pickle_sum, unpickle_sum],
|
|
rewrite [mul_mod_right, if_pos (eq.refl 0), mul_div_cancel_left _ aux, countable.picklek]
|
|
end
|
|
| (sum.inr b) :=
|
|
assert aux₁ : 2 > 0, from dec_trivial,
|
|
assert aux₂ : 1 mod 2 = 1, by rewrite [modulo_def],
|
|
assert aux₃ : 1 ≠ 0, from dec_trivial,
|
|
begin
|
|
esimp [pickle_sum, unpickle_sum],
|
|
rewrite [add.comm, add_mul_mod_self_left aux₁, aux₂, if_neg aux₃, add_sub_cancel_left,
|
|
mul_div_cancel_left _ aux₁, countable.picklek]
|
|
end
|
|
|
|
definition countable_sum [instance] {A B : Type} [h₁ : countable A] [h₂ : countable B] : countable (sum A B) :=
|
|
countable.mk
|
|
(λ s, pickle_sum s)
|
|
(λ n, unpickle_sum n)
|
|
(λ s, unpickle_pickle_sum s)
|
|
|
|
end sum
|