3d0d0947d6
some of the changes are backported from the hott3 library pi_pathover and pi_pathover' are interchanged (same for variants and for sigma) various definitions received explicit arguments: pinverse and eq_equiv_homotopy and ***.sigma_char eq_of_fn_eq_fn is renamed to inj in definitions about higher loop spaces and homotopy groups, the natural number arguments are now consistently before the type arguments
143 lines
5 KiB
Text
143 lines
5 KiB
Text
/-
|
|
Copyright (c) 2014 Jakob von Raumer. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
Author: Jakob von Raumer
|
|
-/
|
|
|
|
import .iso
|
|
|
|
open iso is_equiv equiv eq is_trunc sigma
|
|
|
|
/-
|
|
A category is a precategory extended by a witness
|
|
that the function from paths to isomorphisms is an equivalence.
|
|
-/
|
|
namespace category
|
|
/-
|
|
TODO: restructure this. Should is_univalent be a class with as argument
|
|
(C : Precategory). Or is that problematic if we want to apply this to cases where e.g.
|
|
a b are functors, and we need to synthesize ? : precategory (functor C D).
|
|
-/
|
|
definition is_univalent [class] {ob : Type} (C : precategory ob) :=
|
|
Π(a b : ob), is_equiv (iso_of_eq : a = b → a ≅ b)
|
|
|
|
definition is_equiv_of_is_univalent [instance] {ob : Type} [C : precategory ob]
|
|
[H : is_univalent C] (a b : ob) : is_equiv (iso_of_eq : a = b → a ≅ b) :=
|
|
H a b
|
|
|
|
structure category [class] (ob : Type) extends parent : precategory ob :=
|
|
mk' :: (iso_of_path_equiv : is_univalent parent)
|
|
|
|
-- Remark: category and precategory are classes. So, the structure command
|
|
-- does not create a coercion between them automatically.
|
|
-- This coercion is needed for definitions such as category_eq_of_equiv
|
|
-- without it, we would have to explicitly use category.to_precategory
|
|
attribute category.to_precategory [coercion]
|
|
|
|
abbreviation iso_of_path_equiv := @category.iso_of_path_equiv
|
|
attribute category.iso_of_path_equiv [instance]
|
|
|
|
definition category.mk [reducible] [unfold 2] {ob : Type} (C : precategory ob)
|
|
(H : is_univalent C) : category ob :=
|
|
precategory.rec_on C category.mk' H
|
|
|
|
section basic
|
|
variables {ob : Type} [C : category ob]
|
|
include C
|
|
|
|
-- Make iso_of_path_equiv a class instance
|
|
attribute iso_of_path_equiv [instance]
|
|
|
|
definition eq_equiv_iso [constructor] (a b : ob) : (a = b) ≃ (a ≅ b) :=
|
|
equiv.mk iso_of_eq _
|
|
|
|
definition eq_of_iso [reducible] {a b : ob} : a ≅ b → a = b :=
|
|
iso_of_eq⁻¹ᶠ
|
|
|
|
definition iso_of_eq_eq_of_iso {a b : ob} (p : a ≅ b) : iso_of_eq (eq_of_iso p) = p :=
|
|
right_inv iso_of_eq p
|
|
|
|
definition hom_of_eq_eq_of_iso {a b : ob} (p : a ≅ b) : hom_of_eq (eq_of_iso p) = to_hom p :=
|
|
ap to_hom !iso_of_eq_eq_of_iso
|
|
|
|
definition inv_of_eq_eq_of_iso {a b : ob} (p : a ≅ b) : inv_of_eq (eq_of_iso p) = to_inv p :=
|
|
ap to_inv !iso_of_eq_eq_of_iso
|
|
|
|
theorem eq_of_iso_refl {a : ob} : eq_of_iso (iso.refl a) = idp :=
|
|
inv_eq_of_eq idp
|
|
|
|
theorem eq_of_iso_trans {a b c : ob} (p : a ≅ b) (q : b ≅ c) :
|
|
eq_of_iso (p ⬝i q) = eq_of_iso p ⬝ eq_of_iso q :=
|
|
begin
|
|
apply inv_eq_of_eq,
|
|
apply eq.inverse, apply concat, apply iso_of_eq_con,
|
|
apply concat, apply ap (λ x, x ⬝i _), apply iso_of_eq_eq_of_iso,
|
|
apply ap (λ x, _ ⬝i x), apply iso_of_eq_eq_of_iso
|
|
end
|
|
|
|
definition is_trunc_1_ob : is_trunc 1 ob :=
|
|
begin
|
|
apply is_trunc_succ_intro, intro a b,
|
|
fapply is_trunc_is_equiv_closed,
|
|
exact (@eq_of_iso _ _ a b),
|
|
apply is_equiv_inv,
|
|
end
|
|
end basic
|
|
|
|
-- Bundled version of categories
|
|
-- we don't use Category.carrier explicitly, but rather use Precategory.carrier (to_Precategory C)
|
|
structure Category : Type :=
|
|
(carrier : Type)
|
|
(struct : category carrier)
|
|
|
|
attribute Category.struct [instance] [coercion]
|
|
|
|
definition Category.to_Precategory [constructor] [coercion] [reducible] (C : Category)
|
|
: Precategory :=
|
|
Precategory.mk (Category.carrier C) _
|
|
|
|
definition category.Mk [constructor] [reducible] := Category.mk
|
|
definition category.MK [constructor] [reducible] (C : Precategory)
|
|
(H : is_univalent C) : Category := Category.mk C (category.mk C H)
|
|
|
|
definition Category.eta (C : Category) : Category.mk C C = C :=
|
|
Category.rec (λob c, idp) C
|
|
|
|
protected definition category.sigma_char.{u v} [constructor] (ob : Type)
|
|
: category.{u v} ob ≃ Σ(C : precategory.{u v} ob), is_univalent C :=
|
|
begin
|
|
fapply equiv.MK,
|
|
{ intro x, induction x, constructor, assumption},
|
|
{ intro y, induction y with y1 y2, induction y1, constructor, assumption},
|
|
{ intro y, induction y with y1 y2, induction y1, reflexivity},
|
|
{ intro x, induction x, reflexivity}
|
|
end
|
|
|
|
|
|
definition category_eq {ob : Type}
|
|
{C D : category ob}
|
|
(p : Π{a b}, @hom ob C a b = @hom ob D a b)
|
|
(q : Πa b c g f, cast p (@comp ob C a b c g f) = @comp ob D a b c (cast p g) (cast p f))
|
|
: C = D :=
|
|
begin
|
|
apply inj !category.sigma_char,
|
|
fapply sigma_eq,
|
|
{ induction C, induction D, esimp, exact precategory_eq @p q},
|
|
{ unfold is_univalent, apply is_prop.elimo},
|
|
end
|
|
|
|
definition category_eq_of_equiv {ob : Type}
|
|
{C D : category ob}
|
|
(p : Π⦃a b⦄, @hom ob C a b ≃ @hom ob D a b)
|
|
(q : Π{a b c} g f, p (@comp ob C a b c g f) = @comp ob D a b c (p g) (p f))
|
|
: C = D :=
|
|
begin
|
|
fapply category_eq,
|
|
{ intro a b, exact ua !@p},
|
|
{ intros, refine !cast_ua ⬝ !q ⬝ _, unfold [category.to_precategory],
|
|
apply ap011 !@category.comp !cast_ua⁻¹ᵖ !cast_ua⁻¹ᵖ},
|
|
end
|
|
|
|
-- TODO: Category_eq[']
|
|
|
|
end category
|