lean2/library/theories/topology/continuous.lean

314 lines
13 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2016 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jacob Gross, Jeremy Avigad
Continuous functions.
-/
import theories.topology.basic algebra.category ..move
open algebra eq.ops set topology function category sigma.ops
namespace topology
/- continuity on a set -/
variables {X Y Z : Type} [topology X] [topology Y] [topology Z]
definition continuous_on (f : X → Y) (s : set X) : Prop :=
∀ ⦃t : set Y⦄, Open t → (∃ u : set X, Open u ∧ u ∩ s = f '- t ∩ s)
theorem exists_Open_of_continous_on {f : X → Y} {s : set X} {t : set Y} (Ot : Open t)
(H : continuous_on f s) :
∃ u : set X, Open u ∧ u ∩ s = f '- t ∩ s := H Ot
theorem Open_preimage_inter_of_continuous_on {f : X → Y} {s : set X} (Os : Open s)
(Hcont : continuous_on f s) {t : set Y} (Ot : Open t) :
Open (f '- t ∩ s) :=
obtain u [Ou Hu], from Hcont Ot,
by rewrite[-Hu]; exact Open_inter Ou Os
theorem continuous_on_of_forall_open {f : X → Y} {s : set X}
(H : ∀ t, Open t → Open (f '- t ∩ s)) :
continuous_on f s :=
take t, assume Ot,
have f '- t ∩ s ∩ s = f '- t ∩ s, by rewrite [inter_assoc, inter_self],
exists.intro (f '- t ∩ s) (and.intro (H t Ot) this)
theorem Open_preimage_of_continuous_on {f : X → Y} {s : set X} (Opens : Open s)
(contfs : continuous_on f s) {t : set Y} (Ot : Open t) (Hpre : f '- t ⊆ s) :
Open (f '- t) :=
have f '- t ∩ s = f '- t, from inter_eq_self_of_subset Hpre,
show Open (f '- t),
by rewrite -this; apply Open_preimage_inter_of_continuous_on Opens contfs Ot
theorem exists_closed_of_continuous_on {f : X → Y} {s : set X}
(contfs : continuous_on f s) {t : set Y} (clt : closed t) :
∃ u, closed u ∧ u ∩ s = f '- t ∩ s :=
obtain v [Ov (Hv : v ∩ s = f '- -t ∩ s)], from contfs clt,
have -v ∩ s = f '- t ∩ s,
from inter_eq_inter_of_compl_inter_eq_compl_inter (by rewrite [compl_compl, Hv]),
show ∃ u, closed u ∧ u ∩ s = f '- t ∩ s,
from exists.intro (-v) (and.intro (closed_compl Ov) this)
theorem continuous_on_of_forall_closed' {f : X → Y} {s : set X}
(H : ∀ t, closed t → ∃ u, closed u ∧ u ∩ s = f '- t ∩ s) :
continuous_on f s :=
take t : set Y, assume Ot : Open t,
obtain (v : set X) [(clv : closed v) (Hv : v ∩ s = f '- (-t) ∩ s)], from H (-t) (closed_compl Ot),
have (-v) ∩ s = f '- t ∩ s,
from inter_eq_inter_of_compl_inter_eq_compl_inter (by rewrite [compl_compl, Hv]),
show ∃ u, Open u ∧ u ∩ s = f '- t ∩ s,
from exists.intro (-v) (and.intro clv this)
theorem continuous_on_of_forall_closed {f : X → Y} {s : set X} (closeds : closed s)
(H : ∀ B, closed B → closed (f '- B ∩ s)) : continuous_on f s :=
continuous_on_of_forall_closed'
(λ B HB, exists.intro _ (and.intro (H B HB) (by rewrite [inter_assoc, inter_self])))
theorem closed_preimage_inter_of_continuous_on {f : X → Y} {s : set Y} (cls : closed s)
{t : set X} (clt : closed t) (contft : continuous_on f t) :
closed (f '- s ∩ t) :=
obtain u [clu Hu], from exists_closed_of_continuous_on contft cls,
by rewrite [-Hu]; exact (closed_inter clu clt)
theorem continuous_on_subset {s t : set X} {f : X → Y} (Hs : continuous_on f s) (ts : t ⊆ s) :
continuous_on f t :=
take u, assume Ou,
obtain v [Ov Hv], from Hs Ou,
have v ∩ t = f '- u ∩ t, by rewrite [-inter_eq_self_of_subset_right ts, -*inter_assoc, Hv],
show ∃ v, Open v ∧ v ∩ t = f '- u ∩ t, from exists.intro v (and.intro Ov this)
theorem continous_on_union_of_closed {f : X → Y} {s t : set X} (cls : closed s) (clt : closed t)
(contsf : continuous_on f s) (conttf : continuous_on f t) :
continuous_on f (s t) :=
have ∀ u, closed u → closed (f '- u ∩ (s t)), from
begin
intro u clu,
rewrite [inter_distrib_left],
exact closed_union (closed_preimage_inter_of_continuous_on clu cls contsf)
(closed_preimage_inter_of_continuous_on clu clt conttf)
end,
show continuous_on f (s t),
from continuous_on_of_forall_closed (closed_union cls clt) this
theorem continuous_on_empty (f : X → Y) : continuous_on f ∅ :=
continuous_on_of_forall_open
(take B, assume OpenB, by rewrite[inter_empty]; apply Open_empty)
theorem continuous_on_union {f : X → Y} {s t : set X}
(Opens : Open s) (Opent : Open t) (contsf : continuous_on f s) (conttf : continuous_on f t) :
continuous_on f (s t) :=
continuous_on_of_forall_open
(take B, assume OpenB,
have Open (f '- B ∩ s), from Open_preimage_inter_of_continuous_on Opens contsf OpenB,
have Open (f '- B ∩ t), from Open_preimage_inter_of_continuous_on Opent conttf OpenB,
show Open (f '- B ∩ (s t)),
by rewrite [inter_distrib_left]; apply Open_union; assumption; assumption)
theorem continuous_on_id (s : set X) : continuous_on (@id X) s :=
λ B OpB, exists.intro B (and.intro OpB (by rewrite preimage_id))
theorem continuous_on_comp {s : set X} {f : X → Y} {g : Y → Z}
(Hf : continuous_on f s) (Hg : continuous_on g (f ' s)) : continuous_on (g ∘ f) s :=
take t, assume Ot,
obtain (u : set Y) [(Ou : Open u) (Hu : u ∩ f ' s = g '- t ∩ f ' s)], from Hg Ot,
obtain (v : set X) [(Ov : Open v) (Hv : v ∩ s = f '- u ∩ s)], from Hf Ou,
have s ⊆ f '- (f ' s), from subset_preimage_image s f,
have f '- (u ∩ f ' s) ∩ s = f '- (g '- t ∩ f ' s) ∩ s, by rewrite Hu,
have f '- u ∩ s = f '- (g '- t) ∩ s,
begin
revert this,
rewrite [*preimage_inter, *inter_assoc, *inter_eq_self_of_subset_right `s ⊆ f '- (f ' s)`],
intro H, exact H
end,
show ∃ v, Open v ∧ v ∩ s = (g ∘ f) '- t ∩ s,
from exists.intro v (and.intro Ov (eq.trans Hv this))
theorem continuous_on_comp' {s : set X} {t : set Y} {f : X → Y} {g : Y → Z}
(Hf : continuous_on f s) (Hg : continuous_on g t) (H : f ' s ⊆ t) : continuous_on (g ∘ f) s :=
continuous_on_comp Hf (continuous_on_subset Hg H)
section
open classical
theorem continuous_on_singleton (f : X → Y) (x : X) :
continuous_on f '{x} :=
take s, assume Ops,
if Hx : x ∈ f '- s then
have '{x} ⊆ f '- s, from singleton_subset_of_mem Hx,
exists.intro univ (and.intro Open_univ
(by rewrite [univ_inter, inter_eq_self_of_subset_right this]))
else
have f '- s ∩ '{x} = ∅,
from eq_empty_of_forall_not_mem
(take y, assume ymem,
obtain (Hy : y ∈ f '- s) (Hy' : y ∈ '{x}), from ymem,
have y = x, from eq_of_mem_singleton Hy',
show false, from Hx (by rewrite -this; apply Hy)),
exists.intro ∅ (and.intro Open_empty (by rewrite [this, empty_inter]))
theorem continuous_on_const (c : Y) (s : set X) :
continuous_on (λ x : X, c) s :=
take s, assume Ops,
if cs : c ∈ s then
have (λx, c) '- s = @univ X, from eq_univ_of_forall (take x, mem_preimage cs),
exists.intro univ (and.intro Open_univ (by rewrite this))
else
have (λx, c) '- s = (∅ : set X),
from eq_empty_of_forall_not_mem (take x, assume H, cs (mem_of_mem_preimage H)),
exists.intro ∅ (and.intro Open_empty (by rewrite this))
end
/- pointwise continuity on a set -/
definition continuous_at_on (f : X → Y) (x : X) (s : set X) : Prop :=
∀ ⦃t : set Y⦄, Open t → f x ∈ t → ∃ u, Open u ∧ x ∈ u ∧ u ∩ s ⊆ f '- t
theorem continuous_at_on_of_continuous_on {f : X → Y} {s : set X}
(H : continuous_on f s) ⦃x : X⦄ (xs : x ∈ s) :
continuous_at_on f x s :=
take u, assume (Ou : Open u) (fxu : f x ∈ u),
obtain (t : set X) [(Ot : Open t) (Ht : t ∩ s = f '- u ∩ s)], from H Ou,
have x ∈ f '- u ∩ s, from and.intro fxu xs,
have x ∈ t, by rewrite [-Ht at this]; exact and.left this,
exists.intro t (and.intro Ot (and.intro this (by rewrite Ht; apply inter_subset_left)))
section
open classical
theorem continuous_on_of_forall_continuous_at_on {f : X → Y} {s : set X}
(H : ∀ x, continuous_at_on f x s) :
continuous_on f s :=
take t, assume Ot : Open t,
have H₁ : ∀₀ x ∈ f '- t, ∃ u', Open u' ∧ x ∈ u' ∧ u' ∩ s ⊆ f '- t,
from λ x xmem, H x Ot (mem_of_mem_preimage xmem),
let u := ⋃₀ {u' | ∃ x (Hx : x ∈ f '- t), u' = some (H₁ Hx) } in
have Open u, from Open_sUnion
(take u', assume Hu',
obtain x (Hx : x ∈ f '- t) (u'eq : u' = some (H₁ Hx)), from Hu',
show Open u', by rewrite u'eq; apply and.left (some_spec (H₁ Hx))),
have Hu₁ : u ∩ s ⊆ f '- t, from
take x, assume Hx,
obtain xu xs, from Hx,
obtain u' [[x' (Hx' : x' ∈ f '- t) (u'eq : u' = some (H₁ Hx'))] (xu' : x ∈ u')], from xu,
have u' ∩ s ⊆ f '- t, by rewrite u'eq; exact and.right (and.right (some_spec (H₁ Hx'))),
show x ∈ f '- t, from this (and.intro xu' xs),
have Hu₂ : f '- t ∩ s ⊆ u, from
take x, assume Hx : x ∈ f '- t ∩ s,
obtain xft xs, from Hx,
let u' := some (H₁ xft) in
have x ∈ u', from and.left (and.right (some_spec (H₁ xft))),
show x ∈ u, from exists.intro u' (and.intro (exists.intro x (exists.intro xft rfl)) this),
show ∃ u, Open u ∧ u ∩ s = f '- t ∩ s,
from exists.intro u (and.intro `Open u` (inter_eq_inter_right Hu₁ Hu₂))
end
/- continuity -/
definition continuous (f : X → Y) : Prop := ∀ ⦃s : set Y⦄, Open s → Open (f '- s)
theorem continuous_of_continuous_on_univ {f : X → Y} (H : continuous_on f univ) : continuous f :=
λ s Os, by rewrite [-inter_univ]; exact Open_preimage_inter_of_continuous_on Open_univ H Os
theorem continuous_on_of_continuous {f : X → Y} (s : set X) (H : continuous f) :
continuous_on f s :=
take t, assume Ot, exists.intro (f '- t) (and.intro (H Ot) rfl)
theorem continuous_on_univ_of_continuous {f : X → Y} (H : continuous f) : continuous_on f univ :=
continuous_on_of_continuous univ H
theorem continuous_iff (f : X → Y) : continuous f ↔ continuous_on f univ :=
iff.intro continuous_on_univ_of_continuous continuous_of_continuous_on_univ
theorem Open_preimage_of_continuous {f : X → Y} (H : continuous f) ⦃s : set Y⦄ (Os : Open s) :
Open (f '- s) := H Os
theorem closed_preimage_of_continuous {f : X → Y} (H : continuous f) {s : set Y} (cls : closed s) :
closed (f '- s) :=
by rewrite [↑closed, -preimage_compl]; exact H cls
theorem continuous_id : continuous (@id X) :=
λ s Os, Os
theorem continuous_comp {f : X → Y} {g : Y → Z}
(Hf : continuous f) (Hg : continuous g) : continuous (g ∘ f) :=
λ s Os, Hf (Hg Os)
theorem continuous_const (c : Y) : continuous (λ x : X, c) :=
continuous_of_continuous_on_univ (continuous_on_const c univ)
/- continuity at a point -/
definition continuous_at (f : X → Y) (x : X) : Prop :=
∀ ⦃t : set Y⦄, Open t → f x ∈ t → ∃ u, Open u ∧ x ∈ u ∧ u ⊆ f '- t
theorem continuous_at_of_continuous_at_on {f : X → Y} {x : X} {s : set X}
(Os : Open s) (xs : x ∈ s) (H : continuous_at_on f x s) :
continuous_at f x :=
take t, assume Ot fxt,
obtain u Ou xu xssub, from H Ot fxt,
exists.intro (u ∩ s) (and.intro (Open_inter Ou Os)
(and.intro (and.intro xu xs) xssub))
theorem continuous_at_of_continuous_at_on_univ {f : X → Y} {x : X}
(H : continuous_at_on f x univ) :
continuous_at f x :=
continuous_at_of_continuous_at_on Open_univ !mem_univ H
theorem continuous_at_on_univ_of_continuous_at {f : X → Y} {x : X}
(H : continuous_at f x) :
continuous_at_on f x univ :=
take t, assume Ot fxt,
obtain u Ou xu usub, from H Ot fxt,
have u ∩ univ ⊆ f '- t, by rewrite inter_univ; apply usub,
exists.intro u (and.intro Ou (and.intro xu this))
theorem continuous_at_iff_continuous_at_on_univ (f : X → Y) (x : X) :
continuous_at f x ↔ continuous_at_on f x univ :=
iff.intro continuous_at_on_univ_of_continuous_at continuous_at_of_continuous_at_on_univ
/- The Category TOP -/
section TOP
open subtype
private definition TOP_hom (A B : TopologicalSpace) : Type :=
{f : A → B | continuous f}
private definition TOP_ID {A : TopologicalSpace} : TOP_hom A A :=
subtype.tag (@id A) continuous_id
private definition TOP_comp ⦃ A B C : TopologicalSpace ⦄ (g : TOP_hom B C) (f : TOP_hom A B) :
TOP_hom A C :=
subtype.tag (elt_of g ∘ elt_of f)
(continuous_comp (subtype.has_property f) (subtype.has_property g))
private theorem TOP_assoc ⦃A B C D : TopologicalSpace⦄
(h : TOP_hom C D) (g : TOP_hom B C) (f : TOP_hom A B) :
TOP_comp h (TOP_comp g f) = TOP_comp (TOP_comp h g) f :=
subtype.eq rfl
private theorem id_left ⦃A B : TopologicalSpace ⦄ (f : TOP_hom A B) : TOP_comp TOP_ID f = f :=
subtype.eq rfl
private theorem id_right ⦃A B : TopologicalSpace ⦄ (f : TOP_hom A B) : TOP_comp f TOP_ID = f :=
subtype.eq rfl
definition TOP [reducible] [trans_instance] : category TopologicalSpace :=
⦃ category,
hom := TOP_hom,
comp := TOP_comp,
ID := @TOP_ID,
assoc := TOP_assoc,
id_left := id_left,
id_right := id_right
end TOP
end topology