lean2/hott/homotopy/smash.hlean
2017-01-18 22:24:59 +01:00

183 lines
7.3 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2016 Jakob von Raumer. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jakob von Raumer, Floris van Doorn
The Smash Product of Types.
One definition is the cofiber of the map
wedge A B → A × B
However, we define it (equivalently) as the pushout of the maps A + B → 2 and A + B → A × B.
-/
import homotopy.circle homotopy.join types.pointed homotopy.cofiber homotopy.wedge
open bool pointed eq equiv is_equiv sum bool prod unit circle cofiber prod.ops wedge
namespace smash
variables {A B : Type*}
section
open pushout
definition prod_of_sum [unfold 3] (u : A + B) : A × B :=
by induction u with a b; exact (a, pt); exact (pt, b)
definition bool_of_sum [unfold 3] (u : A + B) : bool :=
by induction u; exact ff; exact tt
definition smash' (A B : Type*) : Type := pushout (@prod_of_sum A B) (@bool_of_sum A B)
protected definition mk (a : A) (b : B) : smash' A B := inl (a, b)
definition pointed_smash' [instance] [constructor] (A B : Type*) : pointed (smash' A B) :=
pointed.mk (smash.mk pt pt)
definition smash [constructor] (A B : Type*) : Type* :=
pointed.mk' (smash' A B)
definition auxl : smash A B := inr ff
definition auxr : smash A B := inr tt
definition gluel (a : A) : smash.mk a pt = auxl :> smash A B := glue (inl a)
definition gluer (b : B) : smash.mk pt b = auxr :> smash A B := glue (inr b)
end
definition gluel' (a a' : A) : smash.mk a pt = smash.mk a' pt :> smash A B :=
gluel a ⬝ (gluel a')⁻¹
definition gluer' (b b' : B) : smash.mk pt b = smash.mk pt b' :> smash A B :=
gluer b ⬝ (gluer b')⁻¹
definition glue (a : A) (b : B) : smash.mk a pt = smash.mk pt b :=
gluel' a pt ⬝ gluer' pt b
definition glue_pt_left (b : B) : glue (Point A) b = gluer' pt b :=
whisker_right _ !con.right_inv ⬝ !idp_con
definition glue_pt_right (a : A) : glue a (Point B) = gluel' a pt :=
proof whisker_left _ !con.right_inv qed
definition ap_mk_left {a a' : A} (p : a = a') : ap (λa, smash.mk a (Point B)) p = gluel' a a' :=
by induction p; exact !con.right_inv⁻¹
definition ap_mk_right {b b' : B} (p : b = b') : ap (smash.mk (Point A)) p = gluer' b b' :=
by induction p; exact !con.right_inv⁻¹
protected definition rec {P : smash A B → Type} (Pmk : Πa b, P (smash.mk a b))
(Pl : P auxl) (Pr : P auxr) (Pgl : Πa, Pmk a pt =[gluel a] Pl)
(Pgr : Πb, Pmk pt b =[gluer b] Pr) (x : smash' A B) : P x :=
begin
induction x with x b u,
{ induction x with a b, exact Pmk a b },
{ induction b, exact Pl, exact Pr },
{ induction u: esimp,
{ apply Pgl },
{ apply Pgr }}
end
-- a rec which is easier to prove, but with worse computational properties
protected definition rec' {P : smash A B → Type} (Pmk : Πa b, P (smash.mk a b))
(Pg : Πa b, Pmk a pt =[glue a b] Pmk pt b) (x : smash' A B) : P x :=
begin
induction x using smash.rec,
{ apply Pmk },
{ exact gluel pt ▸ Pmk pt pt },
{ exact gluer pt ▸ Pmk pt pt },
{ refine change_path _ (Pg a pt ⬝o !pathover_tr),
refine whisker_right _ !glue_pt_right ⬝ _, esimp, refine !con.assoc ⬝ _,
apply whisker_left, apply con.left_inv },
{ refine change_path _ ((Pg pt b)⁻¹ᵒ ⬝o !pathover_tr),
refine whisker_right _ !glue_pt_left⁻² ⬝ _,
refine whisker_right _ !inv_con_inv_right ⬝ _, refine !con.assoc ⬝ _,
apply whisker_left, apply con.left_inv }
end
theorem rec_gluel {P : smash A B → Type} {Pmk : Πa b, P (smash.mk a b)}
{Pl : P auxl} {Pr : P auxr} (Pgl : Πa, Pmk a pt =[gluel a] Pl)
(Pgr : Πb, Pmk pt b =[gluer b] Pr) (a : A) :
apd (smash.rec Pmk Pl Pr Pgl Pgr) (gluel a) = Pgl a :=
!pushout.rec_glue
theorem rec_gluer {P : smash A B → Type} {Pmk : Πa b, P (smash.mk a b)}
{Pl : P auxl} {Pr : P auxr} (Pgl : Πa, Pmk a pt =[gluel a] Pl)
(Pgr : Πb, Pmk pt b =[gluer b] Pr) (b : B) :
apd (smash.rec Pmk Pl Pr Pgl Pgr) (gluer b) = Pgr b :=
!pushout.rec_glue
theorem rec_glue {P : smash A B → Type} {Pmk : Πa b, P (smash.mk a b)}
{Pl : P auxl} {Pr : P auxr} (Pgl : Πa, Pmk a pt =[gluel a] Pl)
(Pgr : Πb, Pmk pt b =[gluer b] Pr) (a : A) (b : B) :
apd (smash.rec Pmk Pl Pr Pgl Pgr) (glue a b) =
(Pgl a ⬝o (Pgl pt)⁻¹ᵒ) ⬝o (Pgr pt ⬝o (Pgr b)⁻¹ᵒ) :=
by rewrite [↑glue, ↑gluel', ↑gluer', +apd_con, +apd_inv, +rec_gluel, +rec_gluer]
protected definition elim {P : Type} (Pmk : Πa b, P) (Pl Pr : P)
(Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (x : smash' A B) : P :=
smash.rec Pmk Pl Pr (λa, pathover_of_eq _ (Pgl a)) (λb, pathover_of_eq _ (Pgr b)) x
-- an elim which is easier to prove, but with worse computational properties
protected definition elim' {P : Type} (Pmk : Πa b, P) (Pg : Πa b, Pmk a pt = Pmk pt b)
(x : smash' A B) : P :=
smash.rec' Pmk (λa b, pathover_of_eq _ (Pg a b)) x
theorem elim_gluel {P : Type} {Pmk : Πa b, P} {Pl Pr : P}
(Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (a : A) :
ap (smash.elim Pmk Pl Pr Pgl Pgr) (gluel a) = Pgl a :=
begin
apply eq_of_fn_eq_fn_inv !(pathover_constant (@gluel A B a)),
rewrite [▸*,-apd_eq_pathover_of_eq_ap,↑smash.elim,rec_gluel],
end
theorem elim_gluer {P : Type} {Pmk : Πa b, P} {Pl Pr : P}
(Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (b : B) :
ap (smash.elim Pmk Pl Pr Pgl Pgr) (gluer b) = Pgr b :=
begin
apply eq_of_fn_eq_fn_inv !(pathover_constant (@gluer A B b)),
rewrite [▸*,-apd_eq_pathover_of_eq_ap,↑smash.elim,rec_gluer],
end
theorem elim_glue {P : Type} {Pmk : Πa b, P} {Pl Pr : P}
(Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (a : A) (b : B) :
ap (smash.elim Pmk Pl Pr Pgl Pgr) (glue a b) = (Pgl a ⬝ (Pgl pt)⁻¹) ⬝ (Pgr pt ⬝ (Pgr b)⁻¹) :=
by rewrite [↑glue, ↑gluel', ↑gluer', +ap_con, +ap_inv, +elim_gluel, +elim_gluer]
end smash
open smash
attribute smash.mk auxl auxr [constructor]
attribute smash.rec smash.elim [unfold 9] [recursor 9]
attribute smash.rec' smash.elim' [unfold 6]
namespace smash
variables {A B : Type*}
definition of_smash_pbool [unfold 2] (x : smash A pbool) : A :=
begin
induction x,
{ induction b, exact pt, exact a },
{ exact pt },
{ exact pt },
{ reflexivity },
{ induction b: reflexivity }
end
definition smash_pbool_pequiv [constructor] (A : Type*) : smash A pbool ≃* A :=
begin
fapply pequiv_of_equiv,
{ fapply equiv.MK,
{ exact of_smash_pbool },
{ intro a, exact smash.mk a tt },
{ intro a, reflexivity },
{ exact abstract begin intro x, induction x using smash.rec',
{ induction b, exact (glue a tt)⁻¹, reflexivity },
{ apply eq_pathover_id_right, induction b: esimp,
{ refine ap02 _ !glue_pt_right ⬝ph _,
refine ap_compose (λx, smash.mk x _) _ _ ⬝ph _,
refine ap02 _ (!ap_con ⬝ (!elim_gluel ◾ (!ap_inv ⬝ !elim_gluel⁻²))) ⬝ph _,
apply hinverse, apply square_of_eq,
esimp, refine (!glue_pt_right ◾ !glue_pt_left)⁻¹ },
{ apply square_of_eq, refine !con.left_inv ⬝ _, esimp, symmetry,
refine ap_compose (λx, smash.mk x _) _ _ ⬝ _,
exact ap02 _ !elim_glue }} end end }},
{ reflexivity }
end
end smash