lean2/hott/types/prod.hlean
2014-12-16 13:11:32 -08:00

47 lines
1.3 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Floris van Doorn
Ported from Coq HoTT
Theorems about products
-/
import init.trunc init.datatypes
open eq equiv is_equiv truncation prod
variables {A A' B B' C D : Type}
{a a' a'' : A} {b b₁ b₂ b' b'' : B} {u v w : A × B}
namespace prod
-- prod.eta is already used for the eta rule for strict equality
protected definition peta (u : A × B) : (pr₁ u , pr₂ u) = u :=
destruct u (λu1 u2, idp)
definition pair_path (pa : a = a') (pb : b = b') : (a , b) = (a' , b') :=
eq.rec_on pa (eq.rec_on pb idp)
protected definition path : (pr₁ u = pr₁ v) → (pr₂ u = pr₂ v) → u = v :=
begin
apply (prod.rec_on u), intros (a₁, b₁),
apply (prod.rec_on v), intros (a₂, b₂, H₁, H₂),
apply (transport _ (peta (a₁, b₁))),
apply (transport _ (peta (a₂, b₂))),
apply (pair_path H₁ H₂),
end
/- Symmetry -/
definition isequiv_flip [instance] (A B : Type) : is_equiv (@flip A B) :=
adjointify flip
flip
(λu, destruct u (λb a, idp))
(λu, destruct u (λa b, idp))
definition symm_equiv (A B : Type) : A × B ≃ B × A :=
equiv.mk flip _
-- trunc_prod is defined in sigma
end prod