47 lines
1.3 KiB
Text
47 lines
1.3 KiB
Text
/-
|
||
Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Author: Floris van Doorn
|
||
Ported from Coq HoTT
|
||
|
||
Theorems about products
|
||
-/
|
||
|
||
import init.trunc init.datatypes
|
||
open eq equiv is_equiv truncation prod
|
||
|
||
variables {A A' B B' C D : Type}
|
||
{a a' a'' : A} {b b₁ b₂ b' b'' : B} {u v w : A × B}
|
||
|
||
namespace prod
|
||
|
||
-- prod.eta is already used for the eta rule for strict equality
|
||
protected definition peta (u : A × B) : (pr₁ u , pr₂ u) = u :=
|
||
destruct u (λu1 u2, idp)
|
||
|
||
definition pair_path (pa : a = a') (pb : b = b') : (a , b) = (a' , b') :=
|
||
eq.rec_on pa (eq.rec_on pb idp)
|
||
|
||
protected definition path : (pr₁ u = pr₁ v) → (pr₂ u = pr₂ v) → u = v :=
|
||
begin
|
||
apply (prod.rec_on u), intros (a₁, b₁),
|
||
apply (prod.rec_on v), intros (a₂, b₂, H₁, H₂),
|
||
apply (transport _ (peta (a₁, b₁))),
|
||
apply (transport _ (peta (a₂, b₂))),
|
||
apply (pair_path H₁ H₂),
|
||
end
|
||
|
||
/- Symmetry -/
|
||
|
||
definition isequiv_flip [instance] (A B : Type) : is_equiv (@flip A B) :=
|
||
adjointify flip
|
||
flip
|
||
(λu, destruct u (λb a, idp))
|
||
(λu, destruct u (λa b, idp))
|
||
|
||
definition symm_equiv (A B : Type) : A × B ≃ B × A :=
|
||
equiv.mk flip _
|
||
|
||
-- trunc_prod is defined in sigma
|
||
|
||
end prod
|