lean2/library/theories/combinatorics/choose.lean
2016-02-29 11:53:26 -08:00

224 lines
8.3 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad
Binomial coefficients, "n choose k".
-/
import data.nat.div data.nat.fact data.finset
open decidable
namespace nat
/- choose -/
definition choose :
| 0 0 := 1
| 0 (succ k) := 0
| (succ n) 0 := 1
| (succ n) (succ k) := choose n (succ k) + choose n k
theorem choose_zero_right (n : ) : choose n 0 = 1 :=
nat.cases_on n rfl (take m, rfl)
theorem choose_zero_succ (k : ) : choose 0 (succ k) = 0 := rfl
theorem choose_succ_succ (n k : ) : choose (succ n) (succ k) = choose n (succ k) + choose n k :=
rfl
theorem choose_eq_zero_of_lt {n : } : ∀{k : }, n < k → choose n k = 0 :=
nat.induction_on n
(take k, assume H : 0 < k,
obtain k' (H : k = succ k'), from exists_eq_succ_of_pos H,
by rewrite H)
(take n',
assume IH: ∀ k, n' < k → choose n' k = 0,
take k,
suppose succ n' < k,
obtain k' (keq : k = succ k'), from exists_eq_succ_of_lt this,
have n' < k', by rewrite keq at this; apply lt_of_succ_lt_succ this,
by rewrite [keq, choose_succ_succ, IH _ this, IH _ (lt.trans this !lt_succ_self)])
theorem choose_self (n : ) : choose n n = 1 :=
begin
induction n with [n, ih],
{apply rfl},
rewrite [choose_succ_succ, ih, choose_eq_zero_of_lt !lt_succ_self]
end
theorem choose_succ_self (n : ) : choose (succ n) n = succ n :=
begin
induction n with [n, ih],
{apply rfl},
rewrite [choose_succ_succ, ih, choose_self, add.comm]
end
theorem choose_one_right (n : ) : choose n 1 = n :=
begin
induction n with [n, ih],
{apply rfl},
change choose (succ n) (succ 0) = succ n,
krewrite [choose_succ_succ, ih, choose_zero_right]
end
theorem choose_pos {n : } : ∀ {k : }, k ≤ n → choose n k > 0 :=
begin
induction n with [n, ih],
{intros [k, H],
have k = 0, from eq_of_le_of_ge H !zero_le,
subst k, rewrite choose_zero_right; apply zero_lt_one},
intro k,
cases k with k,
{intros, rewrite [choose_zero_right], apply zero_lt_one},
suppose succ k ≤ succ n,
have k ≤ n, from le_of_succ_le_succ this,
by rewrite [choose_succ_succ]; apply add_pos_right (ih this)
end
-- A key identity. The proof is subtle.
theorem succ_mul_choose_eq (n : ) :
∀ k, succ n * (choose n k) = choose (succ n) (succ k) * succ k :=
begin
induction n with [n, ih],
{intro k,
cases k with k',
{krewrite [*choose_self, one_mul, mul_one]},
{have H : 1 < succ (succ k'), from succ_lt_succ !zero_lt_succ,
krewrite [one_mul, choose_zero_succ, choose_eq_zero_of_lt H, zero_mul]}},
intro k,
cases k with k',
{krewrite [choose_zero_right, choose_one_right]},
rewrite [choose_succ_succ (succ n), right_distrib, -ih (succ k')],
rewrite [choose_succ_succ at {1}, left_distrib, *succ_mul (succ n), mul_succ, -ih k'],
rewrite [*add.assoc, add.left_comm (choose n _)]
end
theorem choose_mul_fact_mul_fact {n : } :
∀ {k : }, k ≤ n → choose n k * fact k * fact (n - k) = fact n :=
begin
induction n using nat.strong_induction_on with [n, ih],
cases n with n,
{intro k H, have k = 0, from eq_zero_of_le_zero H, rewrite this},
intro k,
intro H, -- k ≤ n,
cases k with k,
{rewrite [choose_zero_right, fact_zero, *one_mul]},
have k ≤ n, from le_of_succ_le_succ H,
show choose (succ n) (succ k) * fact (succ k) * fact (succ n - succ k) = fact (succ n), from
begin
rewrite [succ_sub_succ, fact_succ, -mul.assoc, -succ_mul_choose_eq],
rewrite [fact_succ n, -ih n !lt_succ_self this, *mul.assoc]
end
end
theorem choose_def_alt {n k : } (H : k ≤ n) : choose n k = fact n / (fact k * fact (n -k)) :=
eq.symm (nat.div_eq_of_eq_mul_left (mul_pos !fact_pos !fact_pos)
(by rewrite [-mul.assoc, choose_mul_fact_mul_fact H]))
theorem fact_mul_fact_dvd_fact {n k : } (H : k ≤ n) : fact k * fact (n - k) fact n :=
by rewrite [-choose_mul_fact_mul_fact H, mul.assoc]; apply dvd_mul_left
open finset
/- the number of subsets of s of size k is n choose k -/
section card_subsets
variables {A : Type} [deceqA : decidable_eq A]
include deceqA
private theorem aux₀ (s : finset A) : {t ∈ powerset s | card t = 0} = '{∅} :=
ext (take t, iff.intro
(assume H,
have t = ∅, from eq_empty_of_card_eq_zero (of_mem_sep H),
show t ∈ '{ ∅ }, by rewrite [this, mem_singleton_iff])
(assume H,
have t = ∅, by rewrite mem_singleton_iff at H; assumption,
by substvars; exact mem_sep_of_mem !empty_mem_powerset rfl))
private theorem aux₁ (k : ) : {t ∈ powerset (∅ : finset A) | card t = succ k} = ∅ :=
eq_empty_of_forall_not_mem (take t, assume H,
have t ∈ powerset ∅, from mem_of_mem_sep H,
have t = ∅, by rewrite [powerset_empty at this, mem_singleton_iff at this]; assumption,
have card (∅ : finset A) = succ k, by rewrite -this; apply of_mem_sep H,
nat.no_confusion this)
private theorem aux₂ {a : A} {s t : finset A} (anins : a ∉ s) (tpows : t ∈ powerset s) : a ∉ t :=
suppose a ∈ t,
have a ∈ s, from mem_of_subset_of_mem (subset_of_mem_powerset tpows) this,
anins this
private theorem aux₃ {a : A} {s t : finset A} (anins : a ∉ s) (k : ) :
t ∈ (insert a) ' (powerset s) ∧ card t = succ k ↔
t ∈ (insert a) ' {t' ∈ powerset s | card t' = k} :=
iff.intro
(assume H,
obtain H' cardt, from H,
obtain t' [(t'pows : t' ∈ powerset s) (teq : insert a t' = t)], from exists_of_mem_image H',
have aint : a ∈ t, by rewrite -teq; apply mem_insert,
have anint' : a ∉ t', from
(assume aint',
have a ∈ s, from mem_of_subset_of_mem (subset_of_mem_powerset t'pows) aint',
anins this),
have t' = erase a t, by rewrite [-teq, erase_insert (aux₂ anins t'pows)],
have card t' = k, by rewrite [this, card_erase_of_mem aint, cardt],
mem_image (mem_sep_of_mem t'pows this) teq)
(assume H,
obtain t' [Ht' (teq : insert a t' = t)], from exists_of_mem_image H,
have t'pows : t' ∈ powerset s, from mem_of_mem_sep Ht',
have cardt' : card t' = k, from of_mem_sep Ht',
and.intro
(show t ∈ (insert a) ' (powerset s), from mem_image t'pows teq)
(show card t = succ k,
by rewrite [-teq, card_insert_of_not_mem (aux₂ anins t'pows), cardt']))
private theorem aux₄ {a : A} {s : finset A} (anins : a ∉ s) (k : ) :
{t ∈ powerset (insert a s)| card t = succ k} =
{t ∈ powerset s | card t = succ k} (insert a) ' {t ∈ powerset s | card t = k} :=
begin
apply ext, intro t,
rewrite [powerset_insert anins, mem_union_iff, *mem_sep_iff, mem_union_iff, and.right_distrib,
aux₃ anins]
end
private theorem aux₅ {a : A} {s : finset A} (anins : a ∉ s) (k : ) :
{t ∈ powerset s | card t = succ k} ∩ (insert a) ' {t ∈ powerset s | card t = k} = ∅ :=
inter_eq_empty
(take t, assume Ht₁ Ht₂,
have tpows : t ∈ powerset s, from mem_of_mem_sep Ht₁,
have anint : a ∉ t, from aux₂ anins tpows,
obtain t' [Ht' (teq : insert a t' = t)], from exists_of_mem_image Ht₂,
have aint : a ∈ t, by rewrite -teq; apply mem_insert,
show false, from anint aint)
private theorem aux₆ {a : A} {s : finset A} (anins : a ∉ s) (k : ) :
card ((insert a) ' {t ∈ powerset s | card t = k}) = card {t ∈ powerset s | card t = k} :=
have set.inj_on (insert a) (ts {t ∈ powerset s| card t = k}), from
take t₁ t₂, assume Ht₁ Ht₂,
assume Heq : insert a t₁ = insert a t₂,
have t₁ ∈ powerset s, from mem_of_mem_sep Ht₁,
have anint₁ : a ∉ t₁, from aux₂ anins this,
have t₂ ∈ powerset s, from mem_of_mem_sep Ht₂,
have anint₂ : a ∉ t₂, from aux₂ anins this,
calc
t₁ = erase a (insert a t₁) : by rewrite (erase_insert anint₁)
... = erase a (insert a t₂) : Heq
... = t₂ : by rewrite (erase_insert anint₂),
card_image_eq_of_inj_on this
theorem card_subsets (s : finset A) : ∀k, card {t ∈ powerset s | card t = k} = choose (card s) k :=
begin
induction s with a s anins ih,
{intro k,
cases k with k,
{rewrite aux₀},
rewrite aux₁},
intro k,
cases k with k,
{rewrite [aux₀, choose_zero_right]},
rewrite [*(card_insert_of_not_mem anins), aux₄ anins, card_union_of_disjoint (aux₅ anins k),
aux₆ anins k, *ih]
end
end card_subsets
end nat