417 lines
17 KiB
Text
417 lines
17 KiB
Text
/-
|
||
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Floris van Doorn
|
||
|
||
Limits in a category
|
||
-/
|
||
|
||
import ..constructions.cone ..constructions.discrete ..constructions.product
|
||
..constructions.finite_cats ..category ..constructions.functor
|
||
|
||
open is_trunc functor nat_trans eq
|
||
|
||
namespace category
|
||
|
||
variables {ob : Type} [C : precategory ob] {c c' : ob} (D I : Precategory)
|
||
include C
|
||
|
||
definition is_terminal [class] (c : ob) := Πd, is_contr (d ⟶ c)
|
||
definition is_contr_of_is_terminal (c d : ob) [H : is_terminal d] : is_contr (c ⟶ d) :=
|
||
H c
|
||
|
||
local attribute is_contr_of_is_terminal [instance]
|
||
|
||
definition terminal_morphism (c c' : ob) [H : is_terminal c'] : c ⟶ c' :=
|
||
!center
|
||
|
||
definition hom_terminal_eq [H : is_terminal c'] (f f' : c ⟶ c') : f = f' :=
|
||
!is_prop.elim
|
||
|
||
definition eq_terminal_morphism [H : is_terminal c'] (f : c ⟶ c') : f = terminal_morphism c c' :=
|
||
!is_prop.elim
|
||
|
||
definition terminal_iso_terminal (c c' : ob) [H : is_terminal c] [K : is_terminal c']
|
||
: c ≅ c' :=
|
||
iso.MK !terminal_morphism !terminal_morphism !hom_terminal_eq !hom_terminal_eq
|
||
|
||
local attribute is_terminal [reducible]
|
||
theorem is_prop_is_terminal [instance] : is_prop (is_terminal c) :=
|
||
_
|
||
|
||
omit C
|
||
|
||
structure has_terminal_object [class] (D : Precategory) :=
|
||
(d : D)
|
||
(is_terminal : is_terminal d)
|
||
|
||
definition terminal_object [reducible] [unfold 2] := @has_terminal_object.d
|
||
attribute has_terminal_object.is_terminal [instance]
|
||
|
||
variable {D}
|
||
definition terminal_object_iso_terminal_object (H₁ H₂ : has_terminal_object D)
|
||
: @terminal_object D H₁ ≅ @terminal_object D H₂ :=
|
||
!terminal_iso_terminal
|
||
|
||
theorem is_prop_has_terminal_object [instance] (D : Category)
|
||
: is_prop (has_terminal_object D) :=
|
||
begin
|
||
apply is_prop.mk, intro t₁ t₂, induction t₁ with d₁ H₁, induction t₂ with d₂ H₂,
|
||
assert p : d₁ = d₂,
|
||
{ apply eq_of_iso, apply terminal_iso_terminal},
|
||
induction p, exact ap _ !is_prop.elim
|
||
end
|
||
|
||
variable (D)
|
||
definition has_limits_of_shape [class] := Π(F : I ⇒ D), has_terminal_object (cone F)
|
||
|
||
/-
|
||
The next definitions states that a category is complete with respect to diagrams
|
||
in a certain universe. "is_complete.{o₁ h₁ o₂ h₂}" means that D is complete
|
||
with respect to diagrams with shape in Precategory.{o₂ h₂}
|
||
-/
|
||
|
||
definition is_complete.{o₁ h₁ o₂ h₂} [class] (D : Precategory.{o₁ h₁}) :=
|
||
Π(I : Precategory.{o₂ h₂}), has_limits_of_shape D I
|
||
|
||
definition has_limits_of_shape_of_is_complete [instance] [H : is_complete D] (I : Precategory)
|
||
: has_limits_of_shape D I := H I
|
||
|
||
section
|
||
open pi
|
||
theorem is_prop_has_limits_of_shape [instance] (D : Category) (I : Precategory)
|
||
: is_prop (has_limits_of_shape D I) :=
|
||
by apply is_trunc_pi; intro F; exact is_prop_has_terminal_object (Category_cone F)
|
||
|
||
local attribute is_complete [reducible]
|
||
theorem is_prop_is_complete [instance] (D : Category) : is_prop (is_complete D) := _
|
||
end
|
||
|
||
variables {D I}
|
||
definition has_terminal_object_cone [H : has_limits_of_shape D I]
|
||
(F : I ⇒ D) : has_terminal_object (cone F) := H F
|
||
local attribute has_terminal_object_cone [instance]
|
||
|
||
variables (F : I ⇒ D) [H : has_limits_of_shape D I] {i j : I}
|
||
include H
|
||
|
||
definition limit_cone : cone F := !terminal_object
|
||
|
||
definition is_terminal_limit_cone [instance] : is_terminal (limit_cone F) :=
|
||
has_terminal_object.is_terminal _
|
||
|
||
section specific_limit
|
||
omit H
|
||
variable {F}
|
||
variables (x : cone_obj F) [K : is_terminal x]
|
||
include K
|
||
|
||
definition to_limit_object : D :=
|
||
cone_to_obj x
|
||
|
||
definition to_limit_nat_trans : constant_functor I (to_limit_object x) ⟹ F :=
|
||
cone_to_nat x
|
||
|
||
definition to_limit_morphism (i : I) : to_limit_object x ⟶ F i :=
|
||
to_limit_nat_trans x i
|
||
|
||
theorem to_limit_commute {i j : I} (f : i ⟶ j)
|
||
: to_fun_hom F f ∘ to_limit_morphism x i = to_limit_morphism x j :=
|
||
naturality (to_limit_nat_trans x) f ⬝ !id_right
|
||
|
||
definition to_limit_cone_obj [constructor] {d : D} {η : Πi, d ⟶ F i}
|
||
(p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) : cone_obj F :=
|
||
cone_obj.mk d (nat_trans.mk η (λa b f, p f ⬝ !id_right⁻¹))
|
||
|
||
definition to_hom_limit {d : D} (η : Πi, d ⟶ F i)
|
||
(p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) : d ⟶ to_limit_object x :=
|
||
cone_to_hom (terminal_morphism (to_limit_cone_obj x p) x)
|
||
|
||
theorem to_hom_limit_commute {d : D} (η : Πi, d ⟶ F i)
|
||
(p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) (i : I)
|
||
: to_limit_morphism x i ∘ to_hom_limit x η p = η i :=
|
||
cone_to_eq (terminal_morphism (to_limit_cone_obj x p) x) i
|
||
|
||
definition to_limit_cone_hom [constructor] {d : D} {η : Πi, d ⟶ F i}
|
||
(p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) {h : d ⟶ to_limit_object x}
|
||
(q : Πi, to_limit_morphism x i ∘ h = η i)
|
||
: cone_hom (to_limit_cone_obj x p) x :=
|
||
cone_hom.mk h q
|
||
|
||
variable {x}
|
||
theorem to_eq_hom_limit {d : D} {η : Πi, d ⟶ F i}
|
||
(p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) {h : d ⟶ to_limit_object x}
|
||
(q : Πi, to_limit_morphism x i ∘ h = η i) : h = to_hom_limit x η p :=
|
||
ap cone_to_hom (eq_terminal_morphism (to_limit_cone_hom x p q))
|
||
|
||
theorem to_limit_cone_unique {d : D} {η : Πi, d ⟶ F i}
|
||
(p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j)
|
||
{h₁ : d ⟶ to_limit_object x} (q₁ : Πi, to_limit_morphism x i ∘ h₁ = η i)
|
||
{h₂ : d ⟶ to_limit_object x} (q₂ : Πi, to_limit_morphism x i ∘ h₂ = η i): h₁ = h₂ :=
|
||
to_eq_hom_limit p q₁ ⬝ (to_eq_hom_limit p q₂)⁻¹
|
||
|
||
omit K
|
||
definition to_limit_object_iso_to_limit_object [constructor] (x y : cone_obj F)
|
||
[K : is_terminal x] [L : is_terminal y] : to_limit_object x ≅ to_limit_object y :=
|
||
cone_iso_pr1 !terminal_iso_terminal
|
||
|
||
end specific_limit
|
||
|
||
/-
|
||
TODO: relate below definitions to above definitions.
|
||
However, type class resolution seems to fail...
|
||
-/
|
||
|
||
definition limit_object : D :=
|
||
cone_to_obj (limit_cone F)
|
||
|
||
definition limit_nat_trans : constant_functor I (limit_object F) ⟹ F :=
|
||
cone_to_nat (limit_cone F)
|
||
|
||
definition limit_morphism (i : I) : limit_object F ⟶ F i :=
|
||
limit_nat_trans F i
|
||
|
||
variable {H}
|
||
theorem limit_commute {i j : I} (f : i ⟶ j)
|
||
: to_fun_hom F f ∘ limit_morphism F i = limit_morphism F j :=
|
||
naturality (limit_nat_trans F) f ⬝ !id_right
|
||
|
||
variable [H]
|
||
definition limit_cone_obj [constructor] {d : D} {η : Πi, d ⟶ F i}
|
||
(p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) : cone_obj F :=
|
||
cone_obj.mk d (nat_trans.mk η (λa b f, p f ⬝ !id_right⁻¹))
|
||
|
||
variable {H}
|
||
definition hom_limit {d : D} (η : Πi, d ⟶ F i)
|
||
(p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) : d ⟶ limit_object F :=
|
||
cone_to_hom (@(terminal_morphism (limit_cone_obj F p) _) (is_terminal_limit_cone _))
|
||
|
||
theorem hom_limit_commute {d : D} (η : Πi, d ⟶ F i)
|
||
(p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) (i : I)
|
||
: limit_morphism F i ∘ hom_limit F η p = η i :=
|
||
cone_to_eq (@(terminal_morphism (limit_cone_obj F p) _) (is_terminal_limit_cone _)) i
|
||
|
||
definition limit_cone_hom [constructor] {d : D} {η : Πi, d ⟶ F i}
|
||
(p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) {h : d ⟶ limit_object F}
|
||
(q : Πi, limit_morphism F i ∘ h = η i) : cone_hom (limit_cone_obj F p) (limit_cone F) :=
|
||
cone_hom.mk h q
|
||
|
||
variable {F}
|
||
theorem eq_hom_limit {d : D} {η : Πi, d ⟶ F i}
|
||
(p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) {h : d ⟶ limit_object F}
|
||
(q : Πi, limit_morphism F i ∘ h = η i) : h = hom_limit F η p :=
|
||
ap cone_to_hom (@eq_terminal_morphism _ _ _ _ (is_terminal_limit_cone _) (limit_cone_hom F p q))
|
||
|
||
theorem limit_cone_unique {d : D} {η : Πi, d ⟶ F i}
|
||
(p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j)
|
||
{h₁ : d ⟶ limit_object F} (q₁ : Πi, limit_morphism F i ∘ h₁ = η i)
|
||
{h₂ : d ⟶ limit_object F} (q₂ : Πi, limit_morphism F i ∘ h₂ = η i): h₁ = h₂ :=
|
||
eq_hom_limit p q₁ ⬝ (eq_hom_limit p q₂)⁻¹
|
||
|
||
definition limit_hom_limit {F G : I ⇒ D} (η : F ⟹ G) : limit_object F ⟶ limit_object G :=
|
||
hom_limit _ (λi, η i ∘ limit_morphism F i)
|
||
abstract by intro i j f; rewrite [assoc,naturality,-assoc,limit_commute] end
|
||
|
||
theorem limit_hom_limit_commute {F G : I ⇒ D} (η : F ⟹ G)
|
||
: limit_morphism G i ∘ limit_hom_limit η = η i ∘ limit_morphism F i :=
|
||
!hom_limit_commute
|
||
|
||
-- theorem hom_limit_commute {d : D} (η : Πi, d ⟶ F i)
|
||
-- (p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) (i : I)
|
||
-- : limit_morphism F i ∘ hom_limit F η p = η i :=
|
||
-- cone_to_eq (@(terminal_morphism (limit_cone_obj F p) _) (is_terminal_limit_cone _)) i
|
||
|
||
omit H
|
||
|
||
variable (F)
|
||
definition limit_object_iso_limit_object [constructor] (H₁ H₂ : has_limits_of_shape D I) :
|
||
@(limit_object F) H₁ ≅ @(limit_object F) H₂ :=
|
||
cone_iso_pr1 !terminal_object_iso_terminal_object
|
||
|
||
definition limit_functor [constructor] (D I : Precategory) [H : has_limits_of_shape D I]
|
||
: D ^c I ⇒ D :=
|
||
begin
|
||
fapply functor.mk: esimp,
|
||
{ intro F, exact limit_object F},
|
||
{ apply @limit_hom_limit},
|
||
{ intro F, unfold limit_hom_limit, refine (eq_hom_limit _ _)⁻¹, intro i,
|
||
apply comp_id_eq_id_comp},
|
||
{ intro F G H η θ, unfold limit_hom_limit, refine (eq_hom_limit _ _)⁻¹, intro i,
|
||
rewrite [assoc, hom_limit_commute, -assoc, hom_limit_commute, assoc]}
|
||
end
|
||
|
||
section bin_products
|
||
open bool prod.ops
|
||
definition has_binary_products [reducible] (D : Precategory) := has_limits_of_shape D c2
|
||
variables [K : has_binary_products D] (d d' : D)
|
||
include K
|
||
|
||
definition product_object : D :=
|
||
limit_object (c2_functor D d d')
|
||
|
||
infixr ` ×l `:75 := product_object
|
||
|
||
definition pr1 : d ×l d' ⟶ d :=
|
||
limit_morphism (c2_functor D d d') ff
|
||
|
||
definition pr2 : d ×l d' ⟶ d' :=
|
||
limit_morphism (c2_functor D d d') tt
|
||
|
||
variables {d d'}
|
||
definition hom_product {x : D} (f : x ⟶ d) (g : x ⟶ d') : x ⟶ d ×l d' :=
|
||
hom_limit (c2_functor D d d') (bool.rec f g)
|
||
(by intro b₁ b₂ f; induction b₁: induction b₂: esimp at *; try contradiction: apply id_left)
|
||
|
||
theorem pr1_hom_product {x : D} (f : x ⟶ d) (g : x ⟶ d') : !pr1 ∘ hom_product f g = f :=
|
||
hom_limit_commute (c2_functor D d d') (bool.rec f g) _ ff
|
||
|
||
theorem pr2_hom_product {x : D} (f : x ⟶ d) (g : x ⟶ d') : !pr2 ∘ hom_product f g = g :=
|
||
hom_limit_commute (c2_functor D d d') (bool.rec f g) _ tt
|
||
|
||
theorem eq_hom_product {x : D} {f : x ⟶ d} {g : x ⟶ d'} {h : x ⟶ d ×l d'}
|
||
(p : !pr1 ∘ h = f) (q : !pr2 ∘ h = g) : h = hom_product f g :=
|
||
eq_hom_limit _ (bool.rec p q)
|
||
|
||
theorem product_cone_unique {x : D} {f : x ⟶ d} {g : x ⟶ d'}
|
||
{h₁ : x ⟶ d ×l d'} (p₁ : !pr1 ∘ h₁ = f) (q₁ : !pr2 ∘ h₁ = g)
|
||
{h₂ : x ⟶ d ×l d'} (p₂ : !pr1 ∘ h₂ = f) (q₂ : !pr2 ∘ h₂ = g) : h₁ = h₂ :=
|
||
eq_hom_product p₁ q₁ ⬝ (eq_hom_product p₂ q₂)⁻¹
|
||
|
||
variable (D)
|
||
-- TODO: define this in terms of limit_functor and functor_two_left (in exponential_laws)
|
||
definition product_functor [constructor] : D ×c D ⇒ D :=
|
||
functor.mk
|
||
(λx, product_object x.1 x.2)
|
||
(λx y f, hom_product (f.1 ∘ !pr1) (f.2 ∘ !pr2))
|
||
abstract begin intro x, symmetry, apply eq_hom_product: apply comp_id_eq_id_comp end end
|
||
abstract begin intro x y z g f, symmetry, apply eq_hom_product,
|
||
rewrite [assoc,pr1_hom_product,-assoc,pr1_hom_product,assoc],
|
||
rewrite [assoc,pr2_hom_product,-assoc,pr2_hom_product,assoc] end end
|
||
omit K
|
||
variables {D} (d d')
|
||
|
||
definition product_object_iso_product_object [constructor] (H₁ H₂ : has_binary_products D) :
|
||
@product_object D H₁ d d' ≅ @product_object D H₂ d d' :=
|
||
limit_object_iso_limit_object _ H₁ H₂
|
||
|
||
end bin_products
|
||
|
||
section equalizers
|
||
open bool prod.ops sum equalizer_category_hom
|
||
definition has_equalizers [reducible] (D : Precategory) := has_limits_of_shape D equalizer_category
|
||
variables [K : has_equalizers D]
|
||
include K
|
||
|
||
variables {d d' x : D} (f g : d ⟶ d')
|
||
definition equalizer_object : D :=
|
||
limit_object (equalizer_category_functor D f g)
|
||
|
||
definition equalizer : equalizer_object f g ⟶ d :=
|
||
limit_morphism (equalizer_category_functor D f g) ff
|
||
|
||
theorem equalizes : f ∘ equalizer f g = g ∘ equalizer f g :=
|
||
limit_commute (equalizer_category_functor D f g) (inl f1) ⬝
|
||
(limit_commute (equalizer_category_functor D f g) (inl f2))⁻¹
|
||
|
||
variables {f g}
|
||
definition hom_equalizer (h : x ⟶ d) (p : f ∘ h = g ∘ h) : x ⟶ equalizer_object f g :=
|
||
hom_limit (equalizer_category_functor D f g)
|
||
(bool.rec h (g ∘ h))
|
||
begin
|
||
intro b₁ b₂ i; induction i with j j: induction j,
|
||
-- report(?) "esimp" is super slow here
|
||
exact p, reflexivity, apply id_left
|
||
end
|
||
|
||
theorem equalizer_hom_equalizer (h : x ⟶ d) (p : f ∘ h = g ∘ h)
|
||
: equalizer f g ∘ hom_equalizer h p = h :=
|
||
hom_limit_commute (equalizer_category_functor D f g) (bool.rec h (g ∘ h)) _ ff
|
||
|
||
theorem eq_hom_equalizer {h : x ⟶ d} (p : f ∘ h = g ∘ h) {i : x ⟶ equalizer_object f g}
|
||
(q : equalizer f g ∘ i = h) : i = hom_equalizer h p :=
|
||
eq_hom_limit _ (bool.rec q
|
||
begin
|
||
refine ap (λx, x ∘ i) (limit_commute (equalizer_category_functor D f g) (inl f2))⁻¹ ⬝ _,
|
||
refine !assoc⁻¹ ⬝ _,
|
||
exact ap (λx, _ ∘ x) q
|
||
end)
|
||
|
||
theorem equalizer_cone_unique {h : x ⟶ d} (p : f ∘ h = g ∘ h)
|
||
{i₁ : x ⟶ equalizer_object f g} (q₁ : equalizer f g ∘ i₁ = h)
|
||
{i₂ : x ⟶ equalizer_object f g} (q₂ : equalizer f g ∘ i₂ = h) : i₁ = i₂ :=
|
||
eq_hom_equalizer p q₁ ⬝ (eq_hom_equalizer p q₂)⁻¹
|
||
|
||
omit K
|
||
variables (f g)
|
||
definition equalizer_object_iso_equalizer_object [constructor] (H₁ H₂ : has_equalizers D) :
|
||
@equalizer_object D H₁ _ _ f g ≅ @equalizer_object D H₂ _ _ f g :=
|
||
limit_object_iso_limit_object _ H₁ H₂
|
||
|
||
end equalizers
|
||
|
||
section pullbacks
|
||
open sum prod.ops pullback_category_ob pullback_category_hom
|
||
definition has_pullbacks [reducible] (D : Precategory) := has_limits_of_shape D pullback_category
|
||
variables [K : has_pullbacks D]
|
||
include K
|
||
|
||
variables {d₁ d₂ d₃ x : D} (f : d₁ ⟶ d₃) (g : d₂ ⟶ d₃)
|
||
definition pullback_object : D :=
|
||
limit_object (pullback_category_functor D f g)
|
||
|
||
definition pullback : pullback_object f g ⟶ d₂ :=
|
||
limit_morphism (pullback_category_functor D f g) BL
|
||
|
||
definition pullback_rev : pullback_object f g ⟶ d₁ :=
|
||
limit_morphism (pullback_category_functor D f g) TR
|
||
|
||
theorem pullback_commutes : f ∘ pullback_rev f g = g ∘ pullback f g :=
|
||
limit_commute (pullback_category_functor D f g) (inl f1) ⬝
|
||
(limit_commute (pullback_category_functor D f g) (inl f2))⁻¹
|
||
|
||
variables {f g}
|
||
definition hom_pullback (h₁ : x ⟶ d₁) (h₂ : x ⟶ d₂) (p : f ∘ h₁ = g ∘ h₂)
|
||
: x ⟶ pullback_object f g :=
|
||
hom_limit (pullback_category_functor D f g)
|
||
(pullback_category_ob.rec h₁ h₂ (g ∘ h₂))
|
||
begin
|
||
intro i₁ i₂ k; induction k with j j: induction j,
|
||
exact p, reflexivity, apply id_left
|
||
end
|
||
|
||
theorem pullback_hom_pullback (h₁ : x ⟶ d₁) (h₂ : x ⟶ d₂) (p : f ∘ h₁ = g ∘ h₂)
|
||
: pullback f g ∘ hom_pullback h₁ h₂ p = h₂ :=
|
||
hom_limit_commute (pullback_category_functor D f g) (pullback_category_ob.rec h₁ h₂ (g ∘ h₂)) _ BL
|
||
|
||
theorem pullback_rev_hom_pullback (h₁ : x ⟶ d₁) (h₂ : x ⟶ d₂) (p : f ∘ h₁ = g ∘ h₂)
|
||
: pullback_rev f g ∘ hom_pullback h₁ h₂ p = h₁ :=
|
||
hom_limit_commute (pullback_category_functor D f g) (pullback_category_ob.rec h₁ h₂ (g ∘ h₂)) _ TR
|
||
|
||
theorem eq_hom_pullback {h₁ : x ⟶ d₁} {h₂ : x ⟶ d₂} (p : f ∘ h₁ = g ∘ h₂)
|
||
{k : x ⟶ pullback_object f g} (q : pullback f g ∘ k = h₂) (r : pullback_rev f g ∘ k = h₁)
|
||
: k = hom_pullback h₁ h₂ p :=
|
||
eq_hom_limit _ (pullback_category_ob.rec r q
|
||
begin
|
||
refine ap (λx, x ∘ k) (limit_commute (pullback_category_functor D f g) (inl f2))⁻¹ ⬝ _,
|
||
refine !assoc⁻¹ ⬝ _,
|
||
exact ap (λx, _ ∘ x) q
|
||
end)
|
||
|
||
theorem pullback_cone_unique {h₁ : x ⟶ d₁} {h₂ : x ⟶ d₂} (p : f ∘ h₁ = g ∘ h₂)
|
||
{k₁ : x ⟶ pullback_object f g} (q₁ : pullback f g ∘ k₁ = h₂) (r₁ : pullback_rev f g ∘ k₁ = h₁)
|
||
{k₂ : x ⟶ pullback_object f g} (q₂ : pullback f g ∘ k₂ = h₂) (r₂ : pullback_rev f g ∘ k₂ = h₁)
|
||
: k₁ = k₂ :=
|
||
(eq_hom_pullback p q₁ r₁) ⬝ (eq_hom_pullback p q₂ r₂)⁻¹
|
||
|
||
variables (f g)
|
||
definition pullback_object_iso_pullback_object [constructor] (H₁ H₂ : has_pullbacks D) :
|
||
@pullback_object D H₁ _ _ _ f g ≅ @pullback_object D H₂ _ _ _ f g :=
|
||
limit_object_iso_limit_object _ H₁ H₂
|
||
|
||
end pullbacks
|
||
|
||
namespace ops
|
||
infixr ×l := product_object
|
||
end ops
|
||
|
||
end category
|