1186 lines
38 KiB
Text
1186 lines
38 KiB
Text
/-
|
||
Copyright (c) 2014 Robert Y. Lewis. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Author: Robert Y. Lewis
|
||
The real numbers, constructed as equivalence classes of Cauchy sequences of rationals.
|
||
This construction follows Bishop and Bridges (1985).
|
||
|
||
To do:
|
||
o Break positive naturals into their own file and fill in sorry's
|
||
o Fill in sorrys for helper lemmas that will not be handled by simplifier
|
||
o Rename things and possibly make theorems private
|
||
-/
|
||
|
||
import algebra.ordered_field data.nat data.rat.order
|
||
open nat eq eq.ops
|
||
open -[coercions] rat
|
||
----------------------------------------------------------------------------------------------------
|
||
|
||
-----------------------------------------------
|
||
-- positive naturals
|
||
|
||
inductive pnat : Type :=
|
||
pos : Π n : nat, n > 0 → pnat
|
||
|
||
notation `ℕ+` := pnat
|
||
|
||
definition nat_of_pnat (p : pnat) : ℕ :=
|
||
pnat.rec_on p (λ n H, n)
|
||
local postfix `~` : std.prec.max_plus := nat_of_pnat
|
||
|
||
theorem nat_of_pnat_pos (p : pnat) : nat_of_pnat p > 0 :=
|
||
pnat.rec_on p (λ n H, H)
|
||
|
||
definition add (p q : pnat) : pnat :=
|
||
pnat.pos (p~ + q~) (nat.add_pos (nat_of_pnat_pos p) (nat_of_pnat_pos q))
|
||
infix `+` := add
|
||
|
||
definition mul (p q : pnat) : pnat :=
|
||
pnat.pos (p~ * q~) (nat.mul_pos (nat_of_pnat_pos p) (nat_of_pnat_pos q))
|
||
infix `*` := mul
|
||
|
||
definition le (p q : pnat) := p~ ≤ q~
|
||
infix `≤` := le
|
||
notation p `≥` q := q ≤ p
|
||
|
||
definition lt (p q : pnat) := p~ < q~
|
||
infix `<` := lt
|
||
|
||
theorem pnat_le_decidable [instance] (p q : pnat) : decidable (p ≤ q) :=
|
||
pnat.rec_on p (λ n H, pnat.rec_on q
|
||
(λ m H2, if Hl : n ≤ m then decidable.inl Hl else decidable.inr Hl))
|
||
|
||
theorem pnat_lt_decidable [instance] {p q : pnat} : decidable (p < q) :=
|
||
pnat.rec_on p (λ n H, pnat.rec_on q
|
||
(λ m H2, if Hl : n < m then decidable.inl Hl else decidable.inr Hl))
|
||
|
||
theorem ple.trans {p q r : pnat} (H1 : p ≤ q) (H2 : q ≤ r) : p ≤ r := nat.le.trans H1 H2
|
||
|
||
definition max (p q : pnat) :=
|
||
pnat.pos (nat.max (p~) (q~)) (nat.lt_of_lt_of_le (!nat_of_pnat_pos) (!le_max_right))
|
||
|
||
theorem max_right (a b : ℕ+) : max a b ≥ b := !le_max_right
|
||
theorem max_left (a b : ℕ+) : max a b ≥ a := !le_max_left
|
||
theorem max_eq_right {a b : ℕ+} (H : a < b) : max a b = b := sorry -- nat.max_eq_right H
|
||
theorem max_eq_left {a b : ℕ+} (H : ¬ a < b) : max a b = a := sorry
|
||
theorem pnat.le_of_lt {a b : ℕ+} (H : a < b) : a ≤ b := nat.le_of_lt H
|
||
theorem pnat.not_lt_of_le {a b : ℕ+} (H : a ≤ b) : ¬ (b < a) := nat.not_lt_of_ge H
|
||
theorem pnat.le_of_not_lt {a b : ℕ+} (H : ¬ a < b) : b ≤ a := nat.le_of_not_gt H
|
||
theorem pnat.eq_of_le_of_ge {a b : ℕ+} (H1 : a ≤ b) (H2 : b ≤ a) : a = b := sorry
|
||
|
||
theorem pnat.le.refl (a : ℕ+) : a ≤ a := !nat.le.refl
|
||
|
||
notation 2 := pnat.pos 2 dec_trivial
|
||
notation 3 := pnat.pos 3 dec_trivial
|
||
definition pone : pnat := pnat.pos 1 dec_trivial
|
||
|
||
definition pnat.to_rat [reducible] (n : ℕ+) : ℚ :=
|
||
pnat.rec_on n (λ n H, of_nat n)
|
||
|
||
-- these will come in rat
|
||
|
||
theorem rat_of_nat_nonneg (n : ℕ) : 0 ≤ of_nat n := sorry
|
||
|
||
theorem rat_of_nat_is_pos (n : ℕ) (Hn : n > 0) : of_nat n > 0 := sorry
|
||
|
||
theorem rat_of_nat_ge_one (n : ℕ) : n ≥ 1 → of_nat n ≥ 1 := sorry
|
||
|
||
theorem ge_one_of_pos {n : ℕ} (Hn : n > 0) : n ≥ 1 := succ_le_of_lt Hn
|
||
|
||
theorem rat_of_pnat_ge_one (n : ℕ+) : pnat.to_rat n ≥ 1 :=
|
||
pnat.rec_on n (λ m h, rat_of_nat_ge_one m (ge_one_of_pos h))
|
||
|
||
theorem rat_of_pnat_is_pos (n : ℕ+) : pnat.to_rat n > 0 :=
|
||
pnat.rec_on n (λ m h, rat_of_nat_is_pos (m) h)
|
||
|
||
-- not used, except maybe in following thm
|
||
theorem nat_le_to_rat_le {m n : ℕ} (H : m ≤ n) : of_nat m ≤ of_nat n := sorry
|
||
|
||
theorem pnat_le_to_rat_le {m n : ℕ+} (H : m ≤ n) : pnat.to_rat m ≤ pnat.to_rat n := sorry
|
||
|
||
definition inv (n : ℕ+) : ℚ := (1 : ℚ) / pnat.to_rat n
|
||
postfix `⁻¹` := inv
|
||
|
||
theorem inv_pos (n : ℕ+) : n⁻¹ > 0 := div_pos_of_pos !rat_of_pnat_is_pos
|
||
|
||
theorem inv_le_one (n : ℕ+) : n⁻¹ ≤ (1 : ℚ) := sorry
|
||
|
||
theorem pone_inv : pone⁻¹ = 1 := rfl -- ? Why is this rfl?
|
||
|
||
theorem add_invs_nonneg (m n : ℕ+) : 0 ≤ m⁻¹ + n⁻¹ :=
|
||
begin
|
||
apply rat.le_of_lt,
|
||
apply rat.add_pos,
|
||
repeat apply inv_pos,
|
||
end
|
||
|
||
theorem half_shrink (n : ℕ+) : (2 * n)⁻¹ ≤ n⁻¹ := sorry
|
||
|
||
theorem inv_ge_of_le {p q : ℕ+} (H : p ≤ q) : q⁻¹ ≤ p⁻¹ := sorry
|
||
|
||
theorem padd_halves (p : ℕ+) : (2 * p)⁻¹ + (2 * p)⁻¹ = p⁻¹ := sorry
|
||
|
||
theorem add_halves_double (m n : ℕ+) :
|
||
m⁻¹ + n⁻¹ = ((2 * m)⁻¹ + (2 * n)⁻¹) + ((2 * m)⁻¹ + (2 * n)⁻¹) :=
|
||
have simp [visible] : ∀ a b : ℚ, (a + a) + (b + b) = (a + b) + (a + b), from sorry,
|
||
by rewrite [-padd_halves m, -padd_halves n, simp]
|
||
|
||
theorem pnat_div_helper {p q : ℕ+} : (p * q)⁻¹ = p⁻¹ * q⁻¹ := sorry
|
||
|
||
theorem inv_mul_le_inv (p q : ℕ+) : (p * q)⁻¹ ≤ q⁻¹ :=
|
||
begin
|
||
rewrite [pnat_div_helper, -{q⁻¹}rat.one_mul at {2}],
|
||
apply rat.mul_le_mul,
|
||
apply inv_le_one,
|
||
apply rat.le.refl,
|
||
apply rat.le_of_lt,
|
||
apply inv_pos,
|
||
apply rat.le_of_lt rat.zero_lt_one
|
||
end
|
||
|
||
theorem pnat_mul_assoc (a b c : ℕ+) : a * b * c = a * (b * c) := sorry
|
||
|
||
theorem s_mul_assoc_lemma_3 (a b n : ℕ+) (p : ℚ) :
|
||
p * ((a * n)⁻¹ + (b * n)⁻¹) = p * (a⁻¹ + b⁻¹) * n⁻¹ := sorry
|
||
|
||
theorem pnat.mul_le_mul_left (p q : ℕ+) : q ≤ p * q := sorry
|
||
|
||
-------------------------------------
|
||
-- theorems to add to (ordered) field and/or rat
|
||
|
||
theorem div_two (a : ℚ) : (a + a) / (1 + 1) = a := sorry
|
||
|
||
theorem two_pos : (1 : ℚ) + 1 > 0 := rat.add_pos rat.zero_lt_one rat.zero_lt_one
|
||
|
||
theorem find_midpoint {a b : ℚ} (H : a > b) : ∃ c : ℚ, a > b + c :=
|
||
exists.intro ((a - b) / (1 + 1))
|
||
(have H2 [visible] : a + a > (b + b) + (a - b), from calc
|
||
a + a > b + a : rat.add_lt_add_right H
|
||
... = b + a + b - b : rat.add_sub_cancel
|
||
... = (b + b) + (a - b) : sorry, -- simp
|
||
have H3 [visible] : (a + a) / (1 + 1) > ((b + b) + (a - b)) / (1 + 1),
|
||
from div_lt_div_of_lt_of_pos H2 two_pos,
|
||
by rewrite [div_two at H3, -div_add_div_same at H3, div_two at H3]; exact H3)
|
||
|
||
constant ceil : ℚ → ℕ
|
||
|
||
theorem ceil_ge (a : ℚ) : of_nat (ceil a) ≥ a := sorry
|
||
|
||
theorem add_sub_comm (a b c d : ℚ) : a + b - (c + d) = (a - c) + (b - d) := sorry
|
||
|
||
theorem div_helper (a b : ℚ) : (1 / (a * b)) * a = 1 / b := sorry
|
||
|
||
theorem abs_add_three (a b c : ℚ) : abs (a + b + c) ≤ abs a + abs b + abs c := sorry
|
||
|
||
theorem add_le_add_three (a b c d e f : ℚ) (H1 : a ≤ d) (H2 : b ≤ e) (H3 : c ≤ f) :
|
||
a + b + c ≤ d + e + f := sorry
|
||
|
||
theorem distrib_three_right (a b c d : ℚ) : (a + b + c) * d = a * d + b * d + c * d := sorry
|
||
|
||
theorem mul_le_mul_of_mul_div_le (a b c d : ℚ) : a * (b / c) ≤ d → b * a ≤ d * c := sorry
|
||
|
||
definition pceil (a : ℚ) : ℕ+ := pnat.pos (ceil a + 1) (sorry)
|
||
|
||
theorem pceil_helper {a : ℚ} {n : ℕ+} (H : pceil a ≤ n) : n⁻¹ ≤ 1 / a := sorry
|
||
|
||
theorem s_mul_assoc_lemma_4 {n : ℕ+} {ε q : ℚ} (Hε : ε > 0) (Hq : q > 0) (H : n ≥ pceil (q / ε)) :
|
||
q * n⁻¹ ≤ ε :=
|
||
begin
|
||
let H2 := pceil_helper H,
|
||
let H3 := mul_le_of_le_div (pos_div_of_pos_of_pos Hq Hε) H2,
|
||
rewrite -(one_mul ε),
|
||
apply mul_le_mul_of_mul_div_le,
|
||
assumption
|
||
end
|
||
|
||
theorem of_nat_add (a b : ℕ) : of_nat (a + b) = of_nat a + of_nat b := sorry -- did Jeremy add this?
|
||
-------------------------------------
|
||
-- small helper lemmas
|
||
|
||
theorem find_thirds (a b : ℚ) : ∃ n : ℕ+, a + n⁻¹ + n⁻¹ + n⁻¹ < a + b := sorry
|
||
|
||
theorem squeeze {a b : ℚ} (H : ∀ j : ℕ+, a ≤ b + j⁻¹ + j⁻¹ + j⁻¹) : a ≤ b :=
|
||
begin
|
||
apply rat.le_of_not_gt,
|
||
intro Hb,
|
||
apply (exists.elim (find_midpoint Hb)),
|
||
intros c Hc,
|
||
apply (exists.elim (find_thirds b c)),
|
||
intros j Hbj,
|
||
have Ha : a > b + j⁻¹ + j⁻¹ + j⁻¹, from lt.trans Hbj Hc,
|
||
exact absurd !H (not_le_of_gt Ha)
|
||
end
|
||
|
||
theorem rewrite_helper (a b c d : ℚ) : a * b - c * d = a * (b - d) + (a - c) * d :=
|
||
sorry
|
||
|
||
theorem rewrite_helper3 (a b c d e f g: ℚ) : a * (b + c) - (d * e + f * g) =
|
||
(a * b - d * e) + (a * c - f * g) := sorry
|
||
|
||
theorem rewrite_helper4 (a b c d : ℚ) : a * b - c * d = (a * b - a * d) + (a * d - c * d) := sorry
|
||
|
||
theorem rewrite_helper5 (a b x y : ℚ) : a - b = (a - x) + (x - y) + (y - b) := sorry
|
||
|
||
theorem rewrite_helper7 (a b c d x : ℚ) :
|
||
a * b * c - d = (b * c) * (a - x) + (x * b * c - d) := sorry
|
||
|
||
theorem ineq_helper (a b : ℚ) (k m n : ℕ+) (H : a ≤ (k * 2 * m)⁻¹ + (k * 2 * n)⁻¹)
|
||
(H2 : b ≤ (k * 2 * m)⁻¹ + (k * 2 * n)⁻¹) :
|
||
(pnat.to_rat k) * a + b * (pnat.to_rat k) ≤ m⁻¹ + n⁻¹ := sorry
|
||
|
||
theorem factor_lemma (a b c d e : ℚ) : abs (a + b + c - (d + (b + e))) = abs ((a - d) + (c - e)) :=
|
||
sorry
|
||
|
||
theorem factor_lemma_2 (a b c d : ℚ) : (a + b) + (c + d) = (a + c) + (d + b) := sorry
|
||
|
||
|
||
-------------------------------------
|
||
-- The only sorry's after this point are for the simplifier.
|
||
|
||
--------------------------------------
|
||
--------------------------------------
|
||
-- define cauchy sequences and equivalence. show equivalence actually is one
|
||
|
||
notation `seq` := ℕ+ → ℚ
|
||
|
||
definition regular (s : seq) := ∀ m n : ℕ+, abs (s m - s n) ≤ m⁻¹ + n⁻¹
|
||
|
||
definition equiv (s t : seq) := ∀ n : ℕ+, abs (s n - t n) ≤ n⁻¹ + n⁻¹
|
||
infix `≡` := equiv
|
||
|
||
theorem equiv.refl (s : seq) : s ≡ s :=
|
||
begin
|
||
rewrite ↑equiv,
|
||
intros,
|
||
rewrite [rat.sub_self, abs_zero],
|
||
apply add_invs_nonneg
|
||
end
|
||
|
||
theorem equiv.symm (s t : seq) (H : s ≡ t) : t ≡ s :=
|
||
begin
|
||
rewrite ↑equiv at *,
|
||
intros,
|
||
rewrite [-abs_neg, neg_sub],
|
||
exact H n
|
||
end
|
||
|
||
theorem bdd_of_eq {s t : seq} (H : s ≡ t) :
|
||
∀ j : ℕ+, ∀ n : ℕ+, n ≥ 2 * j → abs (s n - t n) ≤ j⁻¹ :=
|
||
begin
|
||
rewrite ↑equiv at *,
|
||
intros [j, n, Hn],
|
||
apply rat.le.trans,
|
||
apply H n,
|
||
rewrite -(padd_halves j),
|
||
apply rat.add_le_add,
|
||
apply inv_ge_of_le Hn,
|
||
apply inv_ge_of_le Hn
|
||
end
|
||
|
||
theorem eq_of_bdd {s t : seq} (Hs : regular s) (Ht : regular t)
|
||
(H : ∀ j : ℕ+, ∃ Nj : ℕ+, ∀ n : ℕ+, Nj ≤ n → abs (s n - t n) ≤ j⁻¹) : s ≡ t :=
|
||
begin
|
||
rewrite ↑equiv,
|
||
intros,
|
||
have Hj : (∀ j : ℕ+, abs (s n - t n) ≤ n⁻¹ + n⁻¹ + j⁻¹ + j⁻¹ + j⁻¹), begin
|
||
intros,
|
||
apply exists.elim (H j),
|
||
intros [Nj, HNj],
|
||
rewrite [-(rat.sub_add_cancel (s n) (s (max j Nj))), rat.add.assoc (s n + -s (max j Nj)),
|
||
↑regular at *],
|
||
apply rat.le.trans,
|
||
apply abs_add_le_abs_add_abs,
|
||
apply rat.le.trans,
|
||
apply rat.add_le_add,
|
||
apply Hs,
|
||
rewrite [-(rat.sub_add_cancel (s (max j Nj)) (t (max j Nj))), rat.add.assoc],
|
||
apply abs_add_le_abs_add_abs,
|
||
apply rat.le.trans,
|
||
apply rat.add_le_add_left,
|
||
apply rat.add_le_add,
|
||
apply HNj (max j Nj) (max_right j Nj),
|
||
apply Ht,
|
||
have simp : ∀ m : ℕ+, n⁻¹ + m⁻¹ + (j⁻¹ + (m⁻¹ + n⁻¹)) = (n⁻¹ + n⁻¹ + j⁻¹) + (m⁻¹ + m⁻¹),
|
||
from sorry, -- simplifier
|
||
rewrite simp,
|
||
have Hms : (max j Nj)⁻¹ + (max j Nj)⁻¹ ≤ j⁻¹ + j⁻¹, begin
|
||
apply rat.add_le_add,
|
||
apply inv_ge_of_le (max_left j Nj),
|
||
apply inv_ge_of_le (max_left j Nj),
|
||
end,
|
||
apply (calc
|
||
n⁻¹ + n⁻¹ + j⁻¹ + ((max j Nj)⁻¹ + (max j Nj)⁻¹) ≤ n⁻¹ + n⁻¹ + j⁻¹ + (j⁻¹ + j⁻¹) :
|
||
rat.add_le_add_left Hms
|
||
... = n⁻¹ + n⁻¹ + j⁻¹ + j⁻¹ + j⁻¹ : by rewrite *rat.add.assoc)
|
||
end,
|
||
apply (squeeze Hj)
|
||
end
|
||
|
||
theorem eq_of_bdd_var {s t : seq} (Hs : regular s) (Ht : regular t)
|
||
(H : ∀ ε : ℚ, ε > 0 → ∃ Nj : ℕ+, ∀ n : ℕ+, Nj ≤ n → abs (s n - t n) ≤ ε) : s ≡ t :=
|
||
begin
|
||
apply eq_of_bdd,
|
||
apply Hs,
|
||
apply Ht,
|
||
intros,
|
||
apply H j⁻¹,
|
||
apply inv_pos
|
||
end
|
||
|
||
set_option pp.beta false
|
||
theorem pnat_bound {ε : ℚ} (Hε : ε > 0) : ∃ p : ℕ+, p⁻¹ ≤ ε :=
|
||
begin
|
||
existsi (pceil (1 / ε)),
|
||
rewrite -(rat.div_div (rat.ne_of_gt Hε)) at {2},
|
||
apply pceil_helper,
|
||
apply pnat.le.refl
|
||
end
|
||
|
||
theorem bdd_of_eq_var {s t : seq} (Hs : regular s) (Ht : regular t) (Heq : s ≡ t) :
|
||
∀ ε : ℚ, ε > 0 → ∃ Nj : ℕ+, ∀ n : ℕ+, Nj ≤ n → abs (s n - t n) ≤ ε :=
|
||
begin
|
||
intro ε Hε,
|
||
apply (exists.elim (pnat_bound Hε)),
|
||
intro N HN,
|
||
let Bd' := bdd_of_eq Heq N,
|
||
existsi 2 * N,
|
||
intro n Hn,
|
||
apply rat.le.trans,
|
||
apply Bd' n Hn,
|
||
assumption
|
||
end
|
||
|
||
theorem equiv.trans (s t u : seq) (Hs : regular s) (Ht : regular t) (Hu : regular u)
|
||
(H : s ≡ t) (H2 : t ≡ u) : s ≡ u :=
|
||
begin
|
||
apply eq_of_bdd Hs Hu,
|
||
intros,
|
||
existsi 2 * (2 * j),
|
||
intro n Hn,
|
||
rewrite [-rat.sub_add_cancel (s n) (t n), rat.add.assoc],
|
||
apply rat.le.trans,
|
||
apply abs_add_le_abs_add_abs,
|
||
have Hst : abs (s n - t n) ≤ (2 * j)⁻¹, from bdd_of_eq H _ _ Hn,
|
||
have Htu : abs (t n - u n) ≤ (2 * j)⁻¹, from bdd_of_eq H2 _ _ Hn,
|
||
rewrite -(padd_halves j),
|
||
apply rat.add_le_add,
|
||
repeat assumption
|
||
end
|
||
|
||
-----------------------------------
|
||
-- define operations on cauchy sequences. show operations preserve regularity
|
||
|
||
definition K (s : seq) : ℕ+ := pnat.pos (ceil (abs (s pone)) + 1 + 1) dec_trivial
|
||
|
||
theorem canon_bound {s : seq} (Hs : regular s) (n : ℕ+) : abs (s n) ≤ pnat.to_rat (K s) :=
|
||
calc
|
||
abs (s n) = abs (s n - s pone + s pone) : by rewrite rat.sub_add_cancel
|
||
... ≤ abs (s n - s pone) + abs (s pone) : abs_add_le_abs_add_abs
|
||
... ≤ n⁻¹ + pone⁻¹ + abs (s pone) : rat.add_le_add_right !Hs
|
||
... = n⁻¹ + (1 + abs (s pone)) : by rewrite [pone_inv, rat.add.assoc]
|
||
... ≤ 1 + (1 + abs (s pone)) : rat.add_le_add_right (inv_le_one n)
|
||
... = abs (s pone) + (1 + 1) :
|
||
by rewrite [add.comm 1 (abs (s pone)), rat.add.comm 1, rat.add.assoc]
|
||
... ≤ of_nat (ceil (abs (s pone))) + (1 + 1) : rat.add_le_add_right (!ceil_ge)
|
||
... = of_nat (ceil (abs (s pone)) + (1 + 1)) : by rewrite of_nat_add
|
||
... = of_nat (ceil (abs (s pone)) + 1 + 1) : by rewrite nat.add.assoc
|
||
|
||
definition K₂ (s t : seq) := max (K s) (K t)
|
||
|
||
theorem K₂_symm (s t : seq) : K₂ s t = K₂ t s :=
|
||
if H : K s < K t then
|
||
(have H1 [visible] : K₂ s t = K t, from max_eq_right H,
|
||
have H2 [visible] : K₂ t s = K t, from max_eq_left (pnat.not_lt_of_le (pnat.le_of_lt H)),
|
||
by rewrite [H1, -H2])
|
||
else
|
||
(have H1 [visible] : K₂ s t = K s, from max_eq_left H,
|
||
if J : K t < K s then
|
||
(have H2 [visible] : K₂ t s = K s, from max_eq_right J, by rewrite [H1, -H2])
|
||
else
|
||
(have Heq [visible] : K t = K s, from
|
||
pnat.eq_of_le_of_ge (pnat.le_of_not_lt H) (pnat.le_of_not_lt J),
|
||
by rewrite [↑K₂, Heq]))
|
||
|
||
theorem canon_2_bound_left (s t : seq) (Hs : regular s) (n : ℕ+) :
|
||
abs (s n) ≤ pnat.to_rat (K₂ s t) :=
|
||
calc
|
||
abs (s n) ≤ pnat.to_rat (K s) : canon_bound Hs n
|
||
... ≤ pnat.to_rat (K₂ s t) : pnat_le_to_rat_le (!max_left)
|
||
|
||
theorem canon_2_bound_right (s t : seq) (Ht : regular t) (n : ℕ+) :
|
||
abs (t n) ≤ pnat.to_rat (K₂ s t) :=
|
||
calc
|
||
abs (t n) ≤ pnat.to_rat (K t) : canon_bound Ht n
|
||
... ≤ pnat.to_rat (K₂ s t) : pnat_le_to_rat_le (!max_right)
|
||
|
||
|
||
definition sadd (s t : seq) : seq := λ n, (s (2 * n)) + (t (2 * n))
|
||
|
||
theorem reg_add_reg {s t : seq} (Hs : regular s) (Ht : regular t) : regular (sadd s t) :=
|
||
begin
|
||
rewrite [↑regular at *, ↑sadd],
|
||
intros,
|
||
rewrite add_sub_comm,
|
||
apply rat.le.trans,
|
||
apply abs_add_le_abs_add_abs,
|
||
rewrite add_halves_double,
|
||
apply rat.add_le_add,
|
||
apply Hs,
|
||
apply Ht
|
||
end
|
||
|
||
definition smul (s t : seq) : seq := λ n : ℕ+, (s ((K₂ s t) * 2 * n)) * (t ((K₂ s t) * 2 * n))
|
||
|
||
theorem reg_mul_reg {s t : seq} (Hs : regular s) (Ht : regular t) : regular (smul s t) :=
|
||
begin
|
||
rewrite [↑regular at *, ↑smul],
|
||
intros,
|
||
rewrite rewrite_helper,
|
||
apply rat.le.trans,
|
||
apply abs_add_le_abs_add_abs,
|
||
apply rat.le.trans,
|
||
apply rat.add_le_add,
|
||
rewrite abs_mul,
|
||
apply rat.mul_le_mul_of_nonneg_right,
|
||
apply canon_2_bound_left s t Hs,
|
||
apply abs_nonneg,
|
||
rewrite abs_mul,
|
||
apply rat.mul_le_mul_of_nonneg_left,
|
||
apply canon_2_bound_right s t Ht,
|
||
apply abs_nonneg,
|
||
apply ineq_helper,
|
||
apply Ht,
|
||
apply Hs
|
||
end
|
||
|
||
definition sneg (s : seq) : seq := λ n : ℕ+, - (s n)
|
||
|
||
theorem reg_neg_reg {s : seq} (Hs : regular s) : regular (sneg s) :=
|
||
begin
|
||
rewrite [↑regular at *, ↑sneg],
|
||
intros,
|
||
rewrite [-abs_neg, neg_sub, sub_neg_eq_add, rat.add.comm],
|
||
apply Hs
|
||
end
|
||
|
||
-----------------------------------
|
||
-- show properties of +, *, -
|
||
|
||
definition zero : seq := λ n, 0
|
||
|
||
definition one : seq := λ n, 1
|
||
|
||
theorem s_add_comm (s t : seq) : sadd s t ≡ sadd t s :=
|
||
begin
|
||
esimp [sadd],
|
||
intro n,
|
||
rewrite [sub_add_eq_sub_sub, rat.add_sub_cancel, rat.sub_self, abs_zero],
|
||
apply add_invs_nonneg
|
||
end
|
||
|
||
theorem s_add_assoc (s t u : seq) (Hs : regular s) (Hu : regular u) :
|
||
sadd (sadd s t) u ≡ sadd s (sadd t u) :=
|
||
begin
|
||
rewrite [↑sadd, ↑equiv, ↑regular at *],
|
||
intros,
|
||
rewrite factor_lemma,
|
||
apply rat.le.trans,
|
||
apply abs_add_le_abs_add_abs,
|
||
apply rat.le.trans,
|
||
rotate 1,
|
||
apply rat.add_le_add_right,
|
||
apply half_shrink,
|
||
rewrite [-(padd_halves (2 * n)), -(padd_halves n), factor_lemma_2],
|
||
apply rat.add_le_add,
|
||
apply Hs,
|
||
apply Hu
|
||
end
|
||
|
||
theorem s_mul_comm (s t : seq) : smul s t ≡ smul t s :=
|
||
begin
|
||
rewrite ↑smul,
|
||
intros n,
|
||
rewrite [*(K₂_symm s t), rat.mul.comm, rat.sub_self, abs_zero],
|
||
apply add_invs_nonneg
|
||
end
|
||
|
||
definition DK (s t : seq) := (K₂ s t) * 2
|
||
theorem DK_rewrite (s t : seq) : (K₂ s t) * 2 = DK s t := rfl
|
||
|
||
definition TK (s t u : seq) := (DK (λ (n : ℕ+), s (mul (DK s t) n) * t (mul (DK s t) n)) u)
|
||
|
||
theorem TK_rewrite (s t u : seq) :
|
||
(DK (λ (n : ℕ+), s (mul (DK s t) n) * t (mul (DK s t) n)) u) = TK s t u := rfl
|
||
|
||
theorem s_mul_assoc_lemma (s t u : seq) (a b c d : ℕ+) :
|
||
abs (s a * t a * u b - s c * t d * u d) ≤ abs (t a) * abs (u b) * abs (s a - s c) +
|
||
abs (s c) * abs (t a) * abs (u b - u d) + abs (s c) * abs (u d) * abs (t a - t d) :=
|
||
begin
|
||
rewrite (rewrite_helper7 _ _ _ _ (s c)),
|
||
apply rat.le.trans,
|
||
apply abs_add_le_abs_add_abs,
|
||
rewrite rat.add.assoc,
|
||
apply rat.add_le_add,
|
||
rewrite 2 abs_mul,
|
||
apply rat.le.refl,
|
||
rewrite [*rat.mul.assoc, -rat.mul_sub_left_distrib, -rat.left_distrib, abs_mul],
|
||
apply rat.mul_le_mul_of_nonneg_left,
|
||
rewrite rewrite_helper,
|
||
apply rat.le.trans,
|
||
apply abs_add_le_abs_add_abs,
|
||
apply rat.add_le_add,
|
||
rewrite abs_mul, apply rat.le.refl,
|
||
rewrite [abs_mul, rat.mul.comm], apply rat.le.refl,
|
||
apply abs_nonneg
|
||
end
|
||
|
||
definition Kq (s : seq) := pnat.to_rat (K s) + 1
|
||
theorem Kq_bound {s : seq} (H : regular s) : ∀ n, abs (s n) ≤ Kq s :=
|
||
begin
|
||
intros,
|
||
apply rat.le_of_lt,
|
||
apply rat.lt_of_le_of_lt,
|
||
apply canon_bound H,
|
||
apply rat.lt_add_of_pos_right,
|
||
apply rat.zero_lt_one
|
||
end
|
||
|
||
theorem Kq_bound_nonneg {s : seq} (H : regular s) : 0 ≤ Kq s :=
|
||
rat.le.trans !abs_nonneg (Kq_bound H 2)
|
||
|
||
theorem Kq_bound_pos {s : seq} (H : regular s) : 0 < Kq s :=
|
||
have H1 : 0 ≤ pnat.to_rat (K s), from rat.le.trans (!abs_nonneg) (canon_bound H 2),
|
||
add_pos_of_nonneg_of_pos H1 rat.zero_lt_one
|
||
|
||
theorem s_mul_assoc_lemma_5 {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u)
|
||
(a b c : ℕ+) : abs (t a) * abs (u b) * abs (s a - s c) ≤ (Kq t) * (Kq u) * (a⁻¹ + c⁻¹) :=
|
||
begin
|
||
repeat apply rat.mul_le_mul,
|
||
apply Kq_bound Ht,
|
||
apply Kq_bound Hu,
|
||
apply abs_nonneg,
|
||
apply Kq_bound_nonneg Ht,
|
||
apply Hs,
|
||
apply abs_nonneg,
|
||
apply rat.mul_nonneg,
|
||
apply Kq_bound_nonneg Ht,
|
||
apply Kq_bound_nonneg Hu,
|
||
end
|
||
|
||
theorem s_mul_assoc_lemma_2 {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u)
|
||
(a b c d : ℕ+) :
|
||
abs (t a) * abs (u b) * abs (s a - s c) + abs (s c) * abs (t a) * abs (u b - u d)
|
||
+ abs (s c) * abs (u d) * abs (t a - t d) ≤
|
||
(Kq t) * (Kq u) * (a⁻¹ + c⁻¹) + (Kq s) * (Kq t) * (b⁻¹ + d⁻¹) + (Kq s) * (Kq u) * (a⁻¹ + d⁻¹) :=
|
||
begin
|
||
apply add_le_add_three,
|
||
repeat apply rat.mul_le_mul,
|
||
apply Kq_bound Ht,
|
||
apply Kq_bound Hu,
|
||
apply abs_nonneg,
|
||
apply Kq_bound_nonneg Ht,
|
||
apply Hs,
|
||
apply abs_nonneg,
|
||
apply rat.mul_nonneg,
|
||
apply Kq_bound_nonneg Ht,
|
||
apply Kq_bound_nonneg Hu,
|
||
repeat apply rat.mul_le_mul,
|
||
apply Kq_bound Hs,
|
||
apply Kq_bound Ht,
|
||
apply abs_nonneg,
|
||
apply Kq_bound_nonneg Hs,
|
||
apply Hu,
|
||
apply abs_nonneg,
|
||
apply rat.mul_nonneg,
|
||
apply Kq_bound_nonneg Hs,
|
||
apply Kq_bound_nonneg Ht,
|
||
repeat apply rat.mul_le_mul,
|
||
apply Kq_bound Hs,
|
||
apply Kq_bound Hu,
|
||
apply abs_nonneg,
|
||
apply Kq_bound_nonneg Hs,
|
||
apply Ht,
|
||
apply abs_nonneg,
|
||
apply rat.mul_nonneg,
|
||
apply Kq_bound_nonneg Hs,
|
||
apply Kq_bound_nonneg Hu
|
||
end
|
||
|
||
theorem s_mul_assoc {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u) :
|
||
smul (smul s t) u ≡ smul s (smul t u) :=
|
||
begin
|
||
apply eq_of_bdd_var,
|
||
repeat apply reg_mul_reg,
|
||
apply Hs,
|
||
apply Ht,
|
||
apply Hu,
|
||
apply reg_mul_reg Hs,
|
||
apply reg_mul_reg Ht Hu,
|
||
intros,
|
||
fapply exists.intro,
|
||
rotate 1,
|
||
intros,
|
||
rewrite [↑smul, *DK_rewrite, *TK_rewrite, -*pnat_mul_assoc, -*rat.mul.assoc],
|
||
apply rat.le.trans,
|
||
apply s_mul_assoc_lemma,
|
||
apply rat.le.trans,
|
||
apply s_mul_assoc_lemma_2,
|
||
apply Hs,
|
||
apply Ht,
|
||
apply Hu,
|
||
rewrite [*s_mul_assoc_lemma_3, -distrib_three_right],
|
||
apply s_mul_assoc_lemma_4,
|
||
apply a,
|
||
repeat apply rat.add_pos,
|
||
repeat apply rat.mul_pos,
|
||
apply Kq_bound_pos Ht,
|
||
apply Kq_bound_pos Hu,
|
||
apply rat.add_pos,
|
||
repeat apply inv_pos,
|
||
repeat apply rat.mul_pos,
|
||
apply Kq_bound_pos Hs,
|
||
apply Kq_bound_pos Ht,
|
||
apply rat.add_pos,
|
||
repeat apply inv_pos,
|
||
repeat apply rat.mul_pos,
|
||
apply Kq_bound_pos Hs,
|
||
apply Kq_bound_pos Hu,
|
||
apply rat.add_pos,
|
||
repeat apply inv_pos,
|
||
apply a_1
|
||
end
|
||
|
||
theorem zero_is_reg : regular zero :=
|
||
begin
|
||
rewrite [↑regular, ↑zero],
|
||
intros,
|
||
rewrite [rat.sub_zero, abs_zero],
|
||
apply add_invs_nonneg
|
||
end
|
||
|
||
theorem s_zero_add (s : seq) (H : regular s) : sadd zero s ≡ s :=
|
||
begin
|
||
rewrite [↑sadd, ↑zero, ↑equiv, ↑regular at H],
|
||
intros,
|
||
rewrite [rat.zero_add],
|
||
apply rat.le.trans,
|
||
apply H,
|
||
apply rat.add_le_add,
|
||
apply half_shrink,
|
||
apply rat.le.refl
|
||
end
|
||
|
||
theorem s_add_zero (s : seq) (H : regular s) : sadd s zero ≡ s :=
|
||
begin
|
||
rewrite [↑sadd, ↑zero, ↑equiv, ↑regular at H],
|
||
intros,
|
||
rewrite [rat.add_zero],
|
||
apply rat.le.trans,
|
||
apply H,
|
||
apply rat.add_le_add,
|
||
apply half_shrink,
|
||
apply rat.le.refl
|
||
end
|
||
|
||
theorem s_neg_cancel (s : seq) (H : regular s) : sadd (sneg s) s ≡ zero :=
|
||
begin
|
||
rewrite [↑sadd, ↑sneg, ↑regular at H, ↑zero, ↑equiv],
|
||
intros,
|
||
rewrite [neg_add_eq_sub, rat.sub_self, rat.sub_zero, abs_zero],
|
||
apply add_invs_nonneg
|
||
end
|
||
|
||
theorem add_well_defined {s t u v : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u)
|
||
(Hv : regular v) (Esu : s ≡ u) (Etv : t ≡ v) : sadd s t ≡ sadd u v :=
|
||
begin
|
||
rewrite [↑sadd, ↑equiv at *],
|
||
intros,
|
||
rewrite [add_sub_comm, add_halves_double],
|
||
apply rat.le.trans,
|
||
apply abs_add_le_abs_add_abs,
|
||
apply rat.add_le_add,
|
||
apply Esu,
|
||
apply Etv
|
||
end
|
||
|
||
theorem mul_bound_helper {s t : seq} (Hs : regular s) (Ht : regular t) (a b c : ℕ+) (j : ℕ+) :
|
||
∃ N : ℕ+, ∀ n : ℕ+, n ≥ N → abs (s (a * n) * t (b * n) - s (c * n) * t (c * n)) ≤ j⁻¹ :=
|
||
begin
|
||
existsi pceil (((pnat.to_rat (K s)) * (b⁻¹ + c⁻¹) + (a⁻¹ + c⁻¹) *
|
||
(pnat.to_rat (K t))) * (pnat.to_rat j)),
|
||
intros n Hn,
|
||
rewrite rewrite_helper4,
|
||
apply rat.le.trans,
|
||
apply abs_add_le_abs_add_abs,
|
||
apply rat.le.trans,
|
||
rotate 1,
|
||
show n⁻¹ * ((pnat.to_rat (K s)) * (b⁻¹ + c⁻¹)) +
|
||
n⁻¹ * ((a⁻¹ + c⁻¹) * (pnat.to_rat (K t))) ≤ j⁻¹, begin
|
||
rewrite -rat.left_distrib,
|
||
apply rat.le.trans,
|
||
apply rat.mul_le_mul_of_nonneg_right,
|
||
apply pceil_helper Hn,
|
||
apply rat.le_of_lt,
|
||
apply rat.add_pos,
|
||
apply rat.mul_pos,
|
||
apply rat_of_pnat_is_pos,
|
||
apply rat.add_pos,
|
||
repeat apply inv_pos,
|
||
apply rat.mul_pos,
|
||
apply rat.add_pos,
|
||
repeat apply inv_pos,
|
||
apply rat_of_pnat_is_pos,
|
||
rewrite div_helper,
|
||
apply rat.le.refl
|
||
end,
|
||
apply rat.add_le_add,
|
||
rewrite [-rat.mul_sub_left_distrib, abs_mul],
|
||
apply rat.le.trans,
|
||
apply rat.mul_le_mul,
|
||
apply canon_bound,
|
||
apply Hs,
|
||
apply Ht,
|
||
apply abs_nonneg,
|
||
apply rat.le_of_lt,
|
||
apply rat_of_pnat_is_pos,
|
||
rewrite [*pnat_div_helper, -rat.right_distrib, -rat.mul.assoc, rat.mul.comm],
|
||
apply rat.mul_le_mul_of_nonneg_left,
|
||
apply rat.le.refl,
|
||
apply rat.le_of_lt,
|
||
apply inv_pos,
|
||
rewrite [-rat.mul_sub_right_distrib, abs_mul],
|
||
apply rat.le.trans,
|
||
apply rat.mul_le_mul,
|
||
apply Hs,
|
||
apply canon_bound,
|
||
apply Ht,
|
||
apply abs_nonneg,
|
||
apply add_invs_nonneg,
|
||
rewrite [*pnat_div_helper, -rat.right_distrib, mul.comm _ n⁻¹, rat.mul.assoc],
|
||
apply rat.mul_le_mul,
|
||
apply rat.le.refl,
|
||
apply rat.le.refl,
|
||
apply rat.le_of_lt,
|
||
apply rat.mul_pos,
|
||
apply rat.add_pos,
|
||
repeat apply inv_pos,
|
||
apply rat_of_pnat_is_pos,
|
||
apply rat.le_of_lt,
|
||
apply inv_pos
|
||
end
|
||
|
||
theorem s_distrib {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u) :
|
||
smul s (sadd t u) ≡ sadd (smul s t) (smul s u) :=
|
||
begin
|
||
apply eq_of_bdd,
|
||
apply reg_mul_reg,
|
||
assumption,
|
||
apply reg_add_reg,
|
||
repeat assumption,
|
||
apply reg_add_reg,
|
||
repeat assumption,
|
||
apply reg_mul_reg,
|
||
repeat assumption,
|
||
apply reg_mul_reg,
|
||
repeat assumption,
|
||
intros,
|
||
let exh1 := λ a b c, mul_bound_helper Hs Ht a b c (2 * j),
|
||
apply exists.elim,
|
||
apply exh1,
|
||
rotate 3,
|
||
intros N1 HN1,
|
||
let exh2 := λ d e f, mul_bound_helper Hs Hu d e f (2 * j),
|
||
apply exists.elim,
|
||
apply exh2,
|
||
rotate 3,
|
||
intros N2 HN2,
|
||
existsi max N1 N2,
|
||
intros n Hn,
|
||
rewrite [↑sadd at *, ↑smul, rewrite_helper3, -padd_halves j, -*pnat_mul_assoc at *],
|
||
apply rat.le.trans,
|
||
apply abs_add_le_abs_add_abs,
|
||
apply rat.add_le_add,
|
||
apply HN1,
|
||
apply ple.trans,
|
||
apply max_left N1 N2,
|
||
apply Hn,
|
||
apply HN2,
|
||
apply ple.trans,
|
||
apply max_right N1 N2,
|
||
apply Hn
|
||
end
|
||
|
||
theorem mul_zero_equiv_zero {s t : seq} (Hs : regular s) (Ht : regular t) (Htz : t ≡ zero) :
|
||
smul s t ≡ zero :=
|
||
begin
|
||
apply eq_of_bdd_var,
|
||
apply reg_mul_reg Hs Ht,
|
||
apply zero_is_reg,
|
||
intro ε Hε,
|
||
let Bd := bdd_of_eq_var Ht zero_is_reg Htz (ε / (Kq s))
|
||
(pos_div_of_pos_of_pos Hε (Kq_bound_pos Hs)),
|
||
apply exists.elim Bd,
|
||
intro N HN,
|
||
existsi N,
|
||
intro n Hn,
|
||
rewrite [↑equiv at Htz, ↑zero at *, rat.sub_zero, ↑smul, abs_mul],
|
||
apply rat.le.trans,
|
||
apply rat.mul_le_mul,
|
||
apply Kq_bound Hs,
|
||
let HN' := λ n, (!rat.sub_zero ▸ HN n),
|
||
apply HN',
|
||
apply ple.trans Hn,
|
||
apply pnat.mul_le_mul_left,
|
||
apply abs_nonneg,
|
||
apply rat.le_of_lt (Kq_bound_pos Hs),
|
||
rewrite (rat.mul_div_cancel' (ne.symm (rat.ne_of_lt (Kq_bound_pos Hs)))),
|
||
apply rat.le.refl
|
||
end
|
||
|
||
theorem neg_bound_eq_bound (s : seq) : K (sneg s) = K s :=
|
||
by rewrite [↑K, ↑sneg, abs_neg]
|
||
|
||
theorem neg_bound2_eq_bound2 (s t : seq) : K₂ s (sneg t) = K₂ s t :=
|
||
by rewrite [↑K₂, neg_bound_eq_bound]
|
||
|
||
theorem sneg_def (s : seq) : (λ (n : ℕ+), -(s n)) = sneg s := rfl
|
||
|
||
theorem mul_neg_equiv_neg_mul {s t : seq} : smul s (sneg t) ≡ sneg (smul s t) :=
|
||
begin
|
||
rewrite [↑equiv, ↑smul],
|
||
intros,
|
||
rewrite [↑sneg, *sub_neg_eq_add, -neg_mul_eq_mul_neg, rat.add.comm, *sneg_def,
|
||
*neg_bound2_eq_bound2, rat.sub_self, abs_zero],
|
||
apply add_invs_nonneg
|
||
end
|
||
|
||
theorem equiv_of_diff_equiv_zero {s t : seq} (Hs : regular s) (Ht : regular t)
|
||
(H : sadd s (sneg t) ≡ zero) : s ≡ t :=
|
||
begin
|
||
have simp : ∀ a b c d e : ℚ, a + b + c + (d + e) = (b + d) + a + e + c, from sorry,
|
||
apply eq_of_bdd Hs Ht,
|
||
intros,
|
||
let He := bdd_of_eq H,
|
||
existsi 2 * (2 * (2 * j)),
|
||
intros n Hn,
|
||
rewrite (rewrite_helper5 _ _ (s (2 * n)) (t (2 * n))),
|
||
apply rat.le.trans,
|
||
apply abs_add_three,
|
||
apply rat.le.trans,
|
||
apply add_le_add_three,
|
||
apply Hs,
|
||
rewrite [↑sadd at He, ↑sneg at He, ↑zero at He],
|
||
let He' := λ a b c, !rat.sub_zero ▸ (He a b c),
|
||
apply (He' _ _ Hn),
|
||
apply Ht,
|
||
rewrite [simp, padd_halves, -(padd_halves j), -(padd_halves (2 * j)), -*rat.add.assoc],
|
||
apply rat.add_le_add_right,
|
||
apply add_le_add_three,
|
||
repeat (apply rat.le.trans; apply inv_ge_of_le Hn; apply half_shrink)
|
||
end
|
||
|
||
theorem s_sub_cancel (s : seq) : sadd s (sneg s) ≡ zero :=
|
||
begin
|
||
rewrite [↑equiv, ↑sadd, ↑sneg, ↑zero],
|
||
intros,
|
||
rewrite [rat.sub_zero, rat.sub_self, abs_zero],
|
||
apply add_invs_nonneg
|
||
end
|
||
|
||
theorem diff_equiv_zero_of_equiv {s t : seq} (Hs : regular s) (Ht : regular t) (H : s ≡ t) :
|
||
sadd s (sneg t) ≡ zero :=
|
||
begin
|
||
let Hnt := reg_neg_reg Ht,
|
||
let Hsnt := reg_add_reg Hs Hnt,
|
||
let Htnt := reg_add_reg Ht Hnt,
|
||
apply equiv.trans,
|
||
rotate 4,
|
||
apply s_sub_cancel t,
|
||
rotate 2,
|
||
apply zero_is_reg,
|
||
apply add_well_defined,
|
||
repeat assumption,
|
||
apply equiv.refl,
|
||
repeat assumption
|
||
end
|
||
|
||
theorem mul_well_defined_half1 {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u)
|
||
(Etu : t ≡ u) : smul s t ≡ smul s u :=
|
||
begin
|
||
let Hst := reg_mul_reg Hs Ht,
|
||
let Hsu := reg_mul_reg Hs Hu,
|
||
let Hnu := reg_neg_reg Hu,
|
||
let Hstu := reg_add_reg Hst Hsu,
|
||
let Hsnu := reg_mul_reg Hs Hnu,
|
||
let Htnu := reg_add_reg Ht Hnu,
|
||
-- let Hstsu := reg_add_reg Hst Hsnu,
|
||
apply equiv_of_diff_equiv_zero,
|
||
apply Hst,
|
||
apply Hsu,
|
||
apply equiv.trans,
|
||
apply reg_add_reg,
|
||
apply Hst,
|
||
apply reg_neg_reg Hsu,
|
||
rotate 1,
|
||
apply zero_is_reg,
|
||
apply equiv.symm,
|
||
apply add_well_defined,
|
||
rotate 2,
|
||
apply reg_mul_reg Hs Ht,
|
||
apply reg_neg_reg Hsu,
|
||
apply equiv.refl,
|
||
apply mul_neg_equiv_neg_mul,
|
||
apply equiv.trans,
|
||
rotate 3,
|
||
apply equiv.symm,
|
||
apply s_distrib,
|
||
repeat assumption,
|
||
rotate 1,
|
||
apply reg_add_reg Hst Hsnu,
|
||
apply Hst,
|
||
apply Hsnu,
|
||
apply reg_add_reg Hst Hsnu,
|
||
apply reg_mul_reg Hs,
|
||
apply reg_add_reg Ht Hnu,
|
||
apply zero_is_reg,
|
||
apply mul_zero_equiv_zero,
|
||
rotate 2,
|
||
apply diff_equiv_zero_of_equiv,
|
||
repeat assumption
|
||
end
|
||
|
||
theorem mul_well_defined_half2 {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u)
|
||
(Est : s ≡ t) : smul s u ≡ smul t u :=
|
||
begin
|
||
let Hsu := reg_mul_reg Hs Hu,
|
||
let Hus := reg_mul_reg Hu Hs,
|
||
let Htu := reg_mul_reg Ht Hu,
|
||
let Hut := reg_mul_reg Hu Ht,
|
||
apply equiv.trans,
|
||
rotate 3,
|
||
apply s_mul_comm,
|
||
apply equiv.trans,
|
||
rotate 3,
|
||
apply mul_well_defined_half1,
|
||
rotate 2,
|
||
apply Ht,
|
||
rotate 1,
|
||
apply s_mul_comm,
|
||
repeat assumption
|
||
end
|
||
|
||
theorem mul_well_defined {s t u v : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u)
|
||
(Hv : regular v) (Esu : s ≡ u) (Etv : t ≡ v) : smul s t ≡ smul u v :=
|
||
begin
|
||
apply equiv.trans,
|
||
exact reg_mul_reg Hs Ht,
|
||
exact reg_mul_reg Hs Hv,
|
||
exact reg_mul_reg Hu Hv,
|
||
apply mul_well_defined_half1,
|
||
repeat assumption,
|
||
apply mul_well_defined_half2,
|
||
repeat assumption
|
||
end
|
||
|
||
theorem neg_well_defined {s t : seq} (Est : s ≡ t) : sneg s ≡ sneg t :=
|
||
begin
|
||
rewrite [↑sneg, ↑equiv at *],
|
||
intros,
|
||
rewrite [-abs_neg, neg_sub, sub_neg_eq_add, rat.add.comm],
|
||
apply Est
|
||
end
|
||
|
||
theorem one_is_reg : regular one :=
|
||
begin
|
||
rewrite [↑regular, ↑one],
|
||
intros,
|
||
rewrite [rat.sub_self, abs_zero],
|
||
apply add_invs_nonneg
|
||
end
|
||
|
||
theorem s_one_mul {s : seq} (H : regular s) : smul one s ≡ s :=
|
||
begin
|
||
rewrite ↑equiv,
|
||
intros,
|
||
rewrite [↑smul, ↑one, rat.one_mul],
|
||
apply rat.le.trans,
|
||
apply H,
|
||
apply rat.add_le_add_right,
|
||
apply inv_mul_le_inv
|
||
end
|
||
|
||
theorem s_mul_one {s : seq} (H : regular s) : smul s one ≡ s :=
|
||
begin
|
||
apply equiv.trans,
|
||
apply reg_mul_reg H one_is_reg,
|
||
rotate 2,
|
||
apply s_mul_comm,
|
||
apply s_one_mul H,
|
||
apply reg_mul_reg one_is_reg H,
|
||
apply H
|
||
end
|
||
|
||
---------------------------------------------
|
||
-- create the type of regular sequences and lift theorems
|
||
|
||
record reg_seq : Type :=
|
||
(sq : seq) (is_reg : regular sq)
|
||
|
||
definition requiv (s t : reg_seq) := (reg_seq.sq s) ≡ (reg_seq.sq t)
|
||
definition requiv.refl (s : reg_seq) : requiv s s := equiv.refl (reg_seq.sq s)
|
||
definition requiv.symm (s t : reg_seq) (H : requiv s t) : requiv t s :=
|
||
equiv.symm (reg_seq.sq s) (reg_seq.sq t) H
|
||
definition requiv.trans (s t u : reg_seq) (H : requiv s t) (H2 : requiv t u) : requiv s u :=
|
||
equiv.trans _ _ _ (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) H H2
|
||
|
||
definition radd (s t : reg_seq) : reg_seq :=
|
||
reg_seq.mk (sadd (reg_seq.sq s) (reg_seq.sq t))
|
||
(reg_add_reg (reg_seq.is_reg s) (reg_seq.is_reg t))
|
||
infix `+` := radd
|
||
|
||
definition rmul (s t : reg_seq) : reg_seq :=
|
||
reg_seq.mk (smul (reg_seq.sq s) (reg_seq.sq t))
|
||
(reg_mul_reg (reg_seq.is_reg s) (reg_seq.is_reg t))
|
||
infix `*` := rmul
|
||
|
||
definition rneg (s : reg_seq) : reg_seq :=
|
||
reg_seq.mk (sneg (reg_seq.sq s)) (reg_neg_reg (reg_seq.is_reg s))
|
||
prefix `-` := rneg
|
||
|
||
definition radd_well_defined {s t u v : reg_seq} (H : requiv s u) (H2 : requiv t v) :
|
||
requiv (s + t) (u + v) :=
|
||
add_well_defined (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) (reg_seq.is_reg v) H H2
|
||
|
||
definition rmul_well_defined {s t u v : reg_seq} (H : requiv s u) (H2 : requiv t v) :
|
||
requiv (s * t) (u * v) :=
|
||
mul_well_defined (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) (reg_seq.is_reg v) H H2
|
||
|
||
definition rneg_well_defined {s t : reg_seq} (H : requiv s t) : requiv (-s) (-t) :=
|
||
neg_well_defined H
|
||
|
||
theorem requiv_is_equiv : equivalence requiv :=
|
||
mk_equivalence requiv requiv.refl requiv.symm requiv.trans
|
||
|
||
definition reg_seq.to_setoid [instance] : setoid reg_seq :=
|
||
⦃setoid, r := requiv, iseqv := requiv_is_equiv⦄
|
||
|
||
definition r_zero : reg_seq :=
|
||
reg_seq.mk (zero) (zero_is_reg)
|
||
|
||
definition r_one : reg_seq :=
|
||
reg_seq.mk (one) (one_is_reg)
|
||
|
||
theorem r_add_comm (s t : reg_seq) : requiv (s + t) (t + s) :=
|
||
s_add_comm (reg_seq.sq s) (reg_seq.sq t)
|
||
|
||
theorem r_add_assoc (s t u : reg_seq) : requiv (s + t + u) (s + (t + u)) :=
|
||
s_add_assoc (reg_seq.sq s) (reg_seq.sq t) (reg_seq.sq u) (reg_seq.is_reg s) (reg_seq.is_reg u)
|
||
|
||
theorem r_zero_add (s : reg_seq) : requiv (r_zero + s) s :=
|
||
s_zero_add (reg_seq.sq s) (reg_seq.is_reg s)
|
||
|
||
theorem r_add_zero (s : reg_seq) : requiv (s + r_zero) s :=
|
||
s_add_zero (reg_seq.sq s) (reg_seq.is_reg s)
|
||
|
||
theorem r_neg_cancel (s : reg_seq) : requiv (-s + s) r_zero :=
|
||
s_neg_cancel (reg_seq.sq s) (reg_seq.is_reg s)
|
||
|
||
theorem r_mul_comm (s t : reg_seq) : requiv (s * t) (t * s) :=
|
||
s_mul_comm (reg_seq.sq s) (reg_seq.sq t)
|
||
|
||
theorem r_mul_assoc (s t u : reg_seq) : requiv (s * t * u) (s * (t * u)) :=
|
||
s_mul_assoc (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u)
|
||
|
||
theorem r_mul_one (s : reg_seq) : requiv (s * r_one) s :=
|
||
s_mul_one (reg_seq.is_reg s)
|
||
|
||
theorem r_one_mul (s : reg_seq) : requiv (r_one * s) s :=
|
||
s_one_mul (reg_seq.is_reg s)
|
||
|
||
theorem r_distrib (s t u : reg_seq) : requiv (s * (t + u)) (s * t + s * u) :=
|
||
s_distrib (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u)
|
||
|
||
----------------------------------------------
|
||
-- take quotients to get ℝ and show it's a comm ring
|
||
|
||
namespace real
|
||
definition real := quot reg_seq.to_setoid
|
||
notation `ℝ` := real
|
||
|
||
definition add (x y : ℝ) : ℝ :=
|
||
(quot.lift_on₂ x y (λ a b, quot.mk (a + b))
|
||
(take a b c d : reg_seq, take Hab : requiv a c, take Hcd : requiv b d,
|
||
quot.sound (radd_well_defined Hab Hcd)))
|
||
infix `+` := add
|
||
|
||
definition mul (x y : ℝ) : ℝ :=
|
||
(quot.lift_on₂ x y (λ a b, quot.mk (a * b))
|
||
(take a b c d : reg_seq, take Hab : requiv a c, take Hcd : requiv b d,
|
||
quot.sound (rmul_well_defined Hab Hcd)))
|
||
infix `*` := mul
|
||
|
||
definition neg (x : ℝ) : ℝ :=
|
||
(quot.lift_on x (λ a, quot.mk (-a)) (take a b : reg_seq, take Hab : requiv a b,
|
||
quot.sound (rneg_well_defined Hab)))
|
||
prefix `-` := neg
|
||
|
||
definition zero : ℝ := quot.mk r_zero
|
||
--notation 0 := zero
|
||
|
||
definition one : ℝ := quot.mk r_one
|
||
|
||
theorem add_comm (x y : ℝ) : x + y = y + x :=
|
||
quot.induction_on₂ x y (λ s t, quot.sound (r_add_comm s t))
|
||
|
||
theorem add_assoc (x y z : ℝ) : x + y + z = x + (y + z) :=
|
||
quot.induction_on₃ x y z (λ s t u, quot.sound (r_add_assoc s t u))
|
||
|
||
theorem zero_add (x : ℝ) : zero + x = x :=
|
||
quot.induction_on x (λ s, quot.sound (r_zero_add s))
|
||
|
||
theorem add_zero (x : ℝ) : x + zero = x :=
|
||
quot.induction_on x (λ s, quot.sound (r_add_zero s))
|
||
|
||
theorem neg_cancel (x : ℝ) : -x + x = zero :=
|
||
quot.induction_on x (λ s, quot.sound (r_neg_cancel s))
|
||
|
||
theorem mul_assoc (x y z : ℝ) : x * y * z = x * (y * z) :=
|
||
quot.induction_on₃ x y z (λ s t u, quot.sound (r_mul_assoc s t u))
|
||
|
||
theorem mul_comm (x y : ℝ) : x * y = y * x :=
|
||
quot.induction_on₂ x y (λ s t, quot.sound (r_mul_comm s t))
|
||
|
||
theorem one_mul (x : ℝ) : one * x = x :=
|
||
quot.induction_on x (λ s, quot.sound (r_one_mul s))
|
||
|
||
theorem mul_one (x : ℝ) : x * one = x :=
|
||
quot.induction_on x (λ s, quot.sound (r_mul_one s))
|
||
|
||
theorem distrib (x y z : ℝ) : x * (y + z) = x * y + x * z :=
|
||
quot.induction_on₃ x y z (λ s t u, quot.sound (r_distrib s t u))
|
||
|
||
theorem distrib_l (x y z : ℝ) : (x + y) * z = x * z + y * z :=
|
||
by rewrite [mul_comm, distrib, {x * _}mul_comm, {y * _}mul_comm] -- this shouldn't be necessary
|
||
|
||
definition comm_ring [reducible] : algebra.comm_ring ℝ :=
|
||
begin
|
||
fapply algebra.comm_ring.mk,
|
||
exact add,
|
||
exact add_assoc,
|
||
exact zero,
|
||
exact zero_add,
|
||
exact add_zero,
|
||
exact neg,
|
||
exact neg_cancel,
|
||
exact add_comm,
|
||
exact mul,
|
||
exact mul_assoc,
|
||
apply one,
|
||
apply one_mul,
|
||
apply mul_one,
|
||
apply distrib,
|
||
apply distrib_l,
|
||
apply mul_comm
|
||
end
|
||
|
||
end real
|