lean2/doc/lean/expr.md
Leonardo de Moura a43020b31b refactor(kernel): remove heterogeneous equality
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2014-01-16 17:39:12 -08:00

59 lines
2 KiB
Markdown

# Expressions
Lean is based on dependent type theory, and is very similar to the one
used in the [Boole](https://github.com/avigad/boole) and
[Coq](http://coq.inria.fr/) systems. In contrast to Coq, Lean is
classical.
In Lean, we have the following kind of expressions: _constants_,
,_function applications_, _(heterogeneous) equality_, _local variables_,
_lambdas_, _dependent function spaces_ (aka _Pis_), _let expressions_,
and _Types_.
## Constants
Constants are essentially references to variable declarations, definitions, axioms and theorems in the
environment. In the following example, we use the command `variables` to declare `x` and `y` as integers.
The `check` command displays the type of the given expression. The `x` and `y` in the `check` command
are constants. They reference the objects declared using the command `variables`.
```lean
variables x y : Nat
check x + y
```
In the following example, we define the constant `s` as the sum of `x` and `y` using the `definition` command.
The `eval` command evaluates (normalizes) the expression `s + 1`. In this example, `eval` will just expand
the definition of `s`, and return `x + y + 1`.
```lean
definition s := x + y
eval s + 1
```
## Function applications
In Lean, the expression `f t` is a function application, where `f` is a function that is applied to `t`.
In the following example, we define the function `max`. The `eval` command evaluates the application `max 1 2`,
and returns the value `2`. Note that, the expression `if (x >= y) then x else y` is also a function application.
It is notation for `ite (x >= y) x y`.
```lean
import if_then_else
definition max (x y : Nat) : Nat := if (x >= y) then x else y
eval max 1 2
```
The expression `max 1` is also a valid expression in Lean, and it has type `Nat -> Nat`.
```lean
check max 1
```
In the following command, we define the function `inc`, and evaluate some expressions using `inc` and `max`.
```lean
definition inc (x : Nat) : Nat := x + 1
eval inc (inc (inc 2))
eval max (inc 2) 2 = 3
```