78 lines
2.7 KiB
Text
78 lines
2.7 KiB
Text
/-
|
|
Copyright (c) 2016 Jakob von Raumer. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
Authors: Jakob von Raumer, Ulrik Buchholtz
|
|
|
|
The Wedge Sum of Two Pointed Types
|
|
-/
|
|
import hit.pointed_pushout .connectedness
|
|
|
|
open eq pushout pointed Pointed
|
|
|
|
definition Wedge (A B : Type*) : Type* := Pushout (pconst Unit A) (pconst Unit B)
|
|
|
|
namespace wedge
|
|
-- TODO maybe find a cleaner proof
|
|
protected definition unit (A : Type*) : A ≃* Wedge Unit A :=
|
|
begin
|
|
fconstructor,
|
|
{ fapply pmap.mk, intro a, apply pinr a, apply respect_pt },
|
|
{ fapply is_equiv.adjointify, intro x, fapply pushout.elim_on x,
|
|
exact λ x, Point A, exact id, intro u, reflexivity,
|
|
intro x, fapply pushout.rec_on x, intro u, cases u, esimp, apply (glue unit.star)⁻¹,
|
|
intro a, reflexivity,
|
|
intro u, cases u, esimp, apply eq_pathover,
|
|
refine _ ⬝hp !ap_id⁻¹, fapply eq_hconcat, apply ap_compose inr,
|
|
krewrite elim_glue, fapply eq_hconcat, apply ap_idp, apply square_of_eq,
|
|
apply con.left_inv,
|
|
intro a, reflexivity },
|
|
end
|
|
end wedge
|
|
|
|
open trunc is_trunc function homotopy
|
|
namespace wedge_extension
|
|
section
|
|
-- The wedge connectivity lemma (Lemma 8.6.2)
|
|
parameters {A B : Type*} (n m : trunc_index)
|
|
[cA : is_conn n .+2 A] [cB : is_conn m .+2 B]
|
|
(P : A → B → (m .+1 +2+ n .+1)-Type)
|
|
(f : Πa : A, P a (Point B))
|
|
(g : Πb : B, P (Point A) b)
|
|
(p : f (Point A) = g (Point B))
|
|
|
|
include cA cB
|
|
private definition Q (a : A) : (n .+1)-Type :=
|
|
trunctype.mk
|
|
(fiber (λs : (Πb : B, P a b), s (Point B)) (f a))
|
|
(is_conn.elim_general (P a) (f a))
|
|
|
|
private definition Q_sec : Πa : A, Q a :=
|
|
is_conn.elim Q (fiber.mk g p⁻¹)
|
|
|
|
protected definition ext : Π(a : A)(b : B), P a b :=
|
|
λa, fiber.point (Q_sec a)
|
|
|
|
protected definition β_left (a : A) : ext a (Point B) = f a :=
|
|
fiber.point_eq (Q_sec a)
|
|
|
|
private definition coh_aux : Σq : ext (Point A) = g,
|
|
β_left (Point A) = ap (λs : (Πb : B, P (Point A) b), s (Point B)) q ⬝ p⁻¹ :=
|
|
equiv.to_fun (fiber.fiber_eq_equiv (Q_sec (Point A)) (fiber.mk g p⁻¹))
|
|
(is_conn.elim_β Q (fiber.mk g p⁻¹))
|
|
|
|
protected definition β_right (b : B) : ext (Point A) b = g b :=
|
|
apd10 (sigma.pr1 coh_aux) b
|
|
|
|
private definition lem : β_left (Point A) = β_right (Point B) ⬝ p⁻¹ :=
|
|
begin
|
|
unfold β_right, unfold β_left,
|
|
krewrite (apd10_eq_ap_eval (sigma.pr1 coh_aux) (Point B)),
|
|
exact sigma.pr2 coh_aux,
|
|
end
|
|
|
|
protected definition coh
|
|
: (β_left (Point A))⁻¹ ⬝ β_right (Point B) = p :=
|
|
by rewrite [lem,con_inv,inv_inv,con.assoc,con.left_inv]
|
|
|
|
end
|
|
end wedge_extension
|