lean2/library/theories/analysis/complex_norm.lean

70 lines
3.1 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2016 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad
Instantiate the complex numbers as a normed space, by temporarily making it an inner product space
over the reals.
-/
import theories.analysis.inner_product data.complex
open nat real complex analysis classical
noncomputable theory
namespace complex
namespace real_inner_product_space
definition smul (a : ) (z : ) : := complex.mk (a * re z) (a * im z)
definition ip (z w : ) : := re z * re w + im z * im w
proposition smul_left_distrib (a : ) (z w : ) : smul a (z + w) = smul a z + smul a w :=
by rewrite [↑smul, *re_add, *im_add, *left_distrib]
proposition smul_right_distrib (a b : ) (z : ) : smul (a + b) z = smul a z + smul b z :=
by rewrite [↑smul, *right_distrib]
proposition mul_smul (a b : ) (z : ) : smul (a * b) z = smul a (smul b z) :=
by rewrite [↑smul, *mul.assoc]
proposition one_smul (z : ) : smul 1 z = z := by rewrite [↑smul, *one_mul, complex.eta]
proposition inner_add_left (x y z : ) : ip (x + y) z = ip x z + ip y z :=
by rewrite [↑ip, re_add, im_add, *right_distrib, *add.assoc, add.left_comm (re y * re z)]
proposition inner_smul_left (a : ) (x y : ) : ip (smul a x) y = a * ip x y :=
by rewrite [↑ip, ↑smul, left_distrib, *mul.assoc]
proposition inner_comm (x y : ) : ip x y = ip y x :=
by rewrite [↑ip, mul.comm, mul.comm (im x)]
proposition inner_self_nonneg (x : ) : ip x x ≥ 0 :=
add_nonneg (mul_self_nonneg (re x)) (mul_self_nonneg (im x))
proposition eq_zero_of_inner_self_eq_zero {x : } (H : ip x x = 0) : x = 0 :=
have re x = 0, from eq_zero_of_mul_self_add_mul_self_eq_zero H,
have im x = 0, from eq_zero_of_mul_self_add_mul_self_eq_zero
(by rewrite [↑ip at H, add.comm at H]; exact H),
by+ rewrite [-complex.eta, `re x = 0`, `im x = 0`]
end real_inner_product_space
protected definition real_inner_product_space [reducible] : inner_product_space :=
⦃ inner_product_space, complex.discrete_field,
smul := real_inner_product_space.smul,
inner := real_inner_product_space.ip,
smul_left_distrib := real_inner_product_space.smul_left_distrib,
smul_right_distrib := real_inner_product_space.smul_right_distrib,
mul_smul := real_inner_product_space.mul_smul,
one_smul := real_inner_product_space.one_smul,
inner_add_left := real_inner_product_space.inner_add_left,
inner_smul_left := real_inner_product_space.inner_smul_left,
inner_comm := real_inner_product_space.inner_comm,
inner_self_nonneg := real_inner_product_space.inner_self_nonneg,
eq_zero_of_inner_self_eq_zero := @real_inner_product_space.eq_zero_of_inner_self_eq_zero
local attribute complex.real_inner_product_space [trans_instance]
protected definition normed_vector_space [trans_instance] [reducible] : normed_vector_space :=
_
theorem norm_squared_eq_cmod (z : ) : ∥ z ∥^2 = cmod z := by rewrite norm_squared
end complex