51640ecff8
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
590 B
590 B
Assumed: f
∀ a b : Type, (f a) = (f b)
Assumed: g
∀ (a b : Type) (c : Bool), g c ((f a) = (f b))
∃ (a b : Type) (c : Bool), g c ((f a) = (f b))
∀ (a b : Type) (c : Bool), (g c (f a)) = (f b) ⇒ (f a)
Bool
∀ (a b : Type) (c : Bool), g c ((f a) = (f b))
∀ a b : Type, (f a) = (f b)
∃ a b : Type, (f a) = (f b) ∧ (f a)
∃ a b : Type, (f a) = (f b) ∨ (f b)
Assumed: a
(f a) ∨ (f a)
(f a) = a ∨ (f a)
(f a) = a ∧ (f a)
∀ a b : Type, (f a) = (f b)
Assumed: g
∀ (a b : Type) (c : Bool), g c ((f a) = (f b))
∃ (a b : Type) (c : Bool), g c ((f a) = (f b))
∀ (a b : Type) (c : Bool), (g c (f a)) = (f b) ⇒ (f a)
Bool
∀ (a b : Type) (c : Bool), g c ((f a) = (f b))
∀ a b : Type, (f a) = (f b)
∃ a b : Type, (f a) = (f b) ∧ (f a)
∃ a b : Type, (f a) = (f b) ∨ (f b)
Assumed: a
(f a) ∨ (f a)
(f a) = a ∨ (f a)
(f a) = a ∧ (f a)