lean2/hott/hit/suspension.hlean

58 lines
1.8 KiB
Text

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: hit.suspension
Authors: Floris van Doorn
Declaration of suspension
-/
import .pushout
open pushout unit eq
definition suspension (A : Type) : Type := pushout (λ(a : A), star) (λ(a : A), star)
namespace suspension
definition north (A : Type) : suspension A :=
inl _ _ star
definition south (A : Type) : suspension A :=
inr _ _ star
definition merid {A : Type} (a : A) : north A = south A :=
glue _ _ a
protected definition rec {A : Type} {P : suspension A → Type} (PN : P !north) (PS : P !south)
(Pm : Π(a : A), merid a ▹ PN = PS) (x : suspension A) : P x :=
begin
fapply (pushout.rec_on _ _ x),
{ intro u, cases u, exact PN},
{ intro u, cases u, exact PS},
{ exact Pm},
end
protected definition rec_on [reducible] {A : Type} {P : suspension A → Type} (y : suspension A)
(PN : P !north) (PS : P !south) (Pm : Π(a : A), merid a ▹ PN = PS) : P y :=
rec PN PS Pm y
definition rec_merid {A : Type} {P : suspension A → Type} (PN : P !north) (PS : P !south)
(Pm : Π(a : A), merid a ▹ PN = PS) (a : A)
: apD (rec PN PS Pm) (merid a) = sorry ⬝ Pm a ⬝ sorry :=
sorry
protected definition elim {A : Type} {P : Type} (PN : P) (PS : P) (Pm : A → PN = PS)
(x : suspension A) : P :=
rec PN PS (λa, !tr_constant ⬝ Pm a) x
protected definition elim_on [reducible] {A : Type} {P : Type} (x : suspension A)
(PN : P) (PS : P) (Pm : A → PN = PS) : P :=
rec PN PS (λa, !tr_constant ⬝ Pm a) x
protected definition elim_merid {A : Type} {P : Type} (PN : P) (PS : P) (Pm : A → PN = PS)
(x : suspension A) (a : A) : ap (elim PN PS Pm) (merid a) = sorry ⬝ Pm a ⬝ sorry :=
sorry
end suspension