1199 lines
37 KiB
Text
1199 lines
37 KiB
Text
/-
|
||
Copyright (c) 2015 Robert Y. Lewis. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Author: Robert Y. Lewis
|
||
The real numbers, constructed as equivalence classes of Cauchy sequences of rationals.
|
||
This construction follows Bishop and Bridges (1985).
|
||
|
||
To do:
|
||
o Rename things and possibly make theorems private
|
||
-/
|
||
import data.real.basic data.rat data.nat
|
||
open rat nat eq pnat
|
||
|
||
local postfix `⁻¹` := pnat.inv
|
||
|
||
namespace rat_seq
|
||
definition pos (s : seq) := ∃ n : ℕ+, n⁻¹ < (s n)
|
||
|
||
definition nonneg (s : seq) := ∀ n : ℕ+, -(n⁻¹) ≤ s n
|
||
|
||
theorem sub_sub_comm (a b c : ℚ) : a - b - c = a - c - b :=
|
||
by rewrite [+sub_eq_add_neg, add.assoc, {-b+_}add.comm, -add.assoc]
|
||
|
||
theorem bdd_away_of_pos {s : seq} (Hs : regular s) (H : pos s) :
|
||
∃ N : ℕ+, ∀ n : ℕ+, n ≥ N → (s n) ≥ N⁻¹ :=
|
||
begin
|
||
cases H with [n, Hn],
|
||
cases sep_by_inv Hn with [N, HN],
|
||
existsi N,
|
||
intro m Hm,
|
||
have Habs : abs (s m - s n) ≥ s n - s m, by rewrite abs_sub; apply le_abs_self,
|
||
have Habs' : s m + abs (s m - s n) ≥ s n, from (iff.mpr (le_add_iff_sub_left_le _ _ _)) Habs,
|
||
have HN' : N⁻¹ + N⁻¹ ≤ s n - n⁻¹, begin
|
||
rewrite sub_eq_add_neg,
|
||
apply iff.mpr (le_add_iff_sub_right_le _ _ _),
|
||
rewrite [sub_neg_eq_add, add.comm, -add.assoc],
|
||
apply le_of_lt HN
|
||
end,
|
||
rewrite add.comm at Habs',
|
||
have Hin : s m ≥ N⁻¹, from calc
|
||
s m ≥ s n - abs (s m - s n) : (iff.mp (le_add_iff_sub_left_le _ _ _)) Habs'
|
||
... ≥ s n - (m⁻¹ + n⁻¹) : sub_le_sub_left !Hs
|
||
... = s n - m⁻¹ - n⁻¹ : by rewrite sub_add_eq_sub_sub
|
||
... = s n - n⁻¹ - m⁻¹ : by rewrite sub_sub_comm
|
||
... ≥ s n - n⁻¹ - N⁻¹ : sub_le_sub_left (inv_ge_of_le Hm)
|
||
... ≥ N⁻¹ + N⁻¹ - N⁻¹ : sub_le_sub_right HN'
|
||
... = N⁻¹ : by rewrite add_sub_cancel,
|
||
apply Hin
|
||
end
|
||
|
||
theorem pos_of_bdd_away {s : seq} (H : ∃ N : ℕ+, ∀ n : ℕ+, n ≥ N → (s n) ≥ N⁻¹) : pos s :=
|
||
begin
|
||
cases H with [N, HN],
|
||
existsi (N + pone),
|
||
apply lt_of_lt_of_le,
|
||
apply inv_add_lt_left,
|
||
apply HN,
|
||
apply pnat.le_of_lt,
|
||
apply lt_add_left
|
||
end
|
||
|
||
theorem bdd_within_of_nonneg {s : seq} (Hs : regular s) (H : nonneg s) :
|
||
∀ n : ℕ+, ∃ N : ℕ+, ∀ m : ℕ+, m ≥ N → s m ≥ -n⁻¹ :=
|
||
begin
|
||
intros,
|
||
existsi n,
|
||
intro m Hm,
|
||
apply le.trans,
|
||
apply neg_le_neg,
|
||
apply inv_ge_of_le,
|
||
apply Hm,
|
||
apply H
|
||
end
|
||
|
||
theorem nonneg_of_bdd_within {s : seq} (Hs : regular s)
|
||
(H : ∀n : ℕ+, ∃ N : ℕ+, ∀ m : ℕ+, m ≥ N → s m ≥ -n⁻¹) : nonneg s :=
|
||
begin
|
||
rewrite ↑nonneg,
|
||
intro k,
|
||
apply ge_of_forall_ge_sub,
|
||
intro ε Hε,
|
||
cases H (pceil ((2) / ε)) with [N, HN],
|
||
apply le.trans,
|
||
rotate 1,
|
||
apply sub_le_of_abs_sub_le_left,
|
||
apply Hs,
|
||
apply (max (pceil ((2)/ε)) N),
|
||
rewrite [+sub_eq_add_neg, neg_add, {_ + (-k⁻¹ + _)}add.comm, *add.assoc],
|
||
apply rat.add_le_add_left,
|
||
apply le.trans,
|
||
rotate 1,
|
||
apply add_le_add,
|
||
rotate 1,
|
||
apply HN (max (pceil ((2)/ε)) N) !pnat.max_right,
|
||
rotate_right 1,
|
||
apply neg_le_neg,
|
||
apply inv_ge_of_le,
|
||
apply pnat.max_left,
|
||
rewrite -neg_add,
|
||
apply neg_le_neg,
|
||
apply le.trans,
|
||
apply add_le_add,
|
||
repeat (apply inv_pceil_div;
|
||
apply add_pos;
|
||
repeat apply zero_lt_one;
|
||
exact Hε),
|
||
rewrite [add_halves],
|
||
apply rat.le_refl
|
||
end
|
||
|
||
theorem pos_of_pos_equiv {s t : seq} (Hs : regular s) (Heq : s ≡ t) (Hp : pos s) : pos t :=
|
||
begin
|
||
cases (bdd_away_of_pos Hs Hp) with [N, HN],
|
||
existsi 2 * 2 * N,
|
||
apply lt_of_lt_of_le,
|
||
rotate 1,
|
||
apply sub_le_of_abs_sub_le_right,
|
||
apply Heq,
|
||
have Hs4 : N⁻¹ ≤ s (2 * 2 * N), from HN _ (!pnat.mul_le_mul_left),
|
||
apply lt_of_lt_of_le,
|
||
rotate 1,
|
||
rewrite sub_eq_add_neg,
|
||
apply iff.mpr !add_le_add_right_iff,
|
||
apply Hs4,
|
||
rewrite [*pnat.mul_assoc, pnat.add_halves, -(pnat.add_halves N), -sub_eq_add_neg, add_sub_cancel],
|
||
apply inv_two_mul_lt_inv
|
||
end
|
||
|
||
theorem nonneg_of_nonneg_equiv {s t : seq} (Hs : regular s) (Ht : regular t) (Heq : s ≡ t)
|
||
(Hp : nonneg s) : nonneg t :=
|
||
begin
|
||
apply nonneg_of_bdd_within,
|
||
apply Ht,
|
||
intros,
|
||
cases bdd_within_of_nonneg Hs Hp (2 * 2 * n) with [Ns, HNs],
|
||
existsi max Ns (2 * 2 * n),
|
||
intro m Hm,
|
||
apply le.trans,
|
||
rotate 1,
|
||
apply sub_le_of_abs_sub_le_right,
|
||
apply Heq,
|
||
apply le.trans,
|
||
rotate 1,
|
||
apply sub_le_sub_right,
|
||
apply HNs,
|
||
apply pnat.le_trans,
|
||
rotate 1,
|
||
apply Hm,
|
||
rotate_right 1,
|
||
apply pnat.max_left,
|
||
have Hms : m⁻¹ ≤ (2 * 2 * n)⁻¹, begin
|
||
apply inv_ge_of_le,
|
||
apply pnat.le_trans,
|
||
rotate 1,
|
||
apply Hm;
|
||
apply pnat.max_right
|
||
end,
|
||
have Hms' : m⁻¹ + m⁻¹ ≤ (2 * 2 * n)⁻¹ + (2 * 2 * n)⁻¹, from add_le_add Hms Hms,
|
||
apply le.trans,
|
||
rotate 1,
|
||
apply sub_le_sub_left,
|
||
apply Hms',
|
||
rewrite [*pnat.mul_assoc, pnat.add_halves, -neg_sub, -pnat.add_halves n, sub_neg_eq_add],
|
||
apply neg_le_neg,
|
||
apply add_le_add_left,
|
||
apply inv_two_mul_le_inv
|
||
end
|
||
|
||
definition s_le (a b : seq) := nonneg (sadd b (sneg a))
|
||
definition s_lt (a b : seq) := pos (sadd b (sneg a))
|
||
|
||
theorem zero_nonneg : nonneg zero :=
|
||
begin
|
||
intros,
|
||
apply neg_nonpos_of_nonneg,
|
||
apply rat.le_of_lt,
|
||
apply pnat.inv_pos
|
||
end
|
||
|
||
theorem s_zero_lt_one : s_lt zero one :=
|
||
begin
|
||
rewrite [↑s_lt, ↑zero, ↑sadd, ↑sneg, ↑one, neg_zero, add_zero, ↑pos],
|
||
existsi 2,
|
||
apply inv_lt_one_of_gt,
|
||
apply one_lt_two
|
||
end
|
||
|
||
protected theorem le_refl {s : seq} (Hs : regular s) : s_le s s :=
|
||
begin
|
||
apply nonneg_of_nonneg_equiv,
|
||
rotate 2,
|
||
apply equiv.symm,
|
||
apply neg_s_cancel s Hs,
|
||
apply zero_nonneg,
|
||
apply zero_is_reg,
|
||
apply reg_add_reg Hs (reg_neg_reg Hs)
|
||
end
|
||
|
||
theorem s_nonneg_of_pos {s : seq} (Hs : regular s) (H : pos s) : nonneg s :=
|
||
begin
|
||
apply nonneg_of_bdd_within,
|
||
apply Hs,
|
||
intros,
|
||
cases bdd_away_of_pos Hs H with [N, HN],
|
||
existsi N,
|
||
intro m Hm,
|
||
apply le.trans,
|
||
rotate 1,
|
||
apply HN,
|
||
apply Hm,
|
||
apply le.trans,
|
||
rotate 1,
|
||
apply rat.le_of_lt,
|
||
apply pnat.inv_pos,
|
||
rewrite -neg_zero,
|
||
apply neg_le_neg,
|
||
apply rat.le_of_lt,
|
||
apply pnat.inv_pos
|
||
end
|
||
|
||
theorem s_le_of_s_lt {s t : seq} (Hs : regular s) (Ht : regular t) (H : s_lt s t) : s_le s t :=
|
||
begin
|
||
rewrite [↑s_le, ↑s_lt at *],
|
||
apply s_nonneg_of_pos,
|
||
repeat (apply reg_add_reg | apply reg_neg_reg | assumption)
|
||
end
|
||
|
||
theorem s_neg_add_eq_s_add_neg (s t : seq) : sneg (sadd s t) ≡ sadd (sneg s) (sneg t) :=
|
||
begin
|
||
rewrite [↑equiv, ↑sadd, ↑sneg],
|
||
intros,
|
||
rewrite [neg_add, sub_self, abs_zero],
|
||
apply add_invs_nonneg
|
||
end
|
||
|
||
theorem equiv_cancel_middle {s t u : seq} (Hs : regular s) (Ht : regular t)
|
||
(Hu : regular u) : sadd (sadd u t) (sneg (sadd u s)) ≡ sadd t (sneg s) :=
|
||
begin
|
||
let Hz := zero_is_reg,
|
||
apply equiv.trans,
|
||
rotate 3,
|
||
apply add_well_defined,
|
||
rotate 4,
|
||
apply s_add_comm,
|
||
apply s_neg_add_eq_s_add_neg,
|
||
apply equiv.trans,
|
||
rotate 3,
|
||
apply s_add_assoc,
|
||
rotate 2,
|
||
apply add_well_defined,
|
||
rotate 4,
|
||
apply equiv.refl,
|
||
apply equiv.trans,
|
||
rotate 4,
|
||
apply equiv.refl,
|
||
rotate_right 1,
|
||
apply equiv.trans,
|
||
rotate 3,
|
||
apply equiv.symm,
|
||
apply s_add_assoc,
|
||
rotate 2,
|
||
apply equiv.trans,
|
||
rotate 4,
|
||
apply s_zero_add,
|
||
rotate_right 1,
|
||
apply add_well_defined,
|
||
rotate 4,
|
||
apply neg_s_cancel,
|
||
rotate 1,
|
||
apply equiv.refl,
|
||
repeat (apply reg_add_reg | apply reg_neg_reg | assumption)
|
||
end
|
||
|
||
protected theorem add_le_add_of_le_right {s t : seq} (Hs : regular s) (Ht : regular t)
|
||
(Lst : s_le s t) : ∀ u : seq, regular u → s_le (sadd u s) (sadd u t) :=
|
||
begin
|
||
intro u Hu,
|
||
rewrite [↑s_le at *],
|
||
apply nonneg_of_nonneg_equiv,
|
||
rotate 2,
|
||
apply equiv.symm,
|
||
apply equiv_cancel_middle,
|
||
repeat (apply reg_add_reg | apply reg_neg_reg | assumption)
|
||
end
|
||
|
||
theorem s_add_lt_add_left {s t : seq} (Hs : regular s) (Ht : regular t) (Hst : s_lt s t) {u : seq}
|
||
(Hu : regular u) : s_lt (sadd u s) (sadd u t) :=
|
||
begin
|
||
rewrite ↑s_lt at *,
|
||
apply pos_of_pos_equiv,
|
||
rotate 1,
|
||
apply equiv.symm,
|
||
apply equiv_cancel_middle,
|
||
repeat (apply reg_add_reg | apply reg_neg_reg | assumption)
|
||
end
|
||
|
||
protected theorem add_nonneg_of_nonneg {s t : seq} (Hs : nonneg s) (Ht : nonneg t) :
|
||
nonneg (sadd s t) :=
|
||
begin
|
||
intros,
|
||
rewrite [-pnat.add_halves, neg_add],
|
||
apply add_le_add,
|
||
apply Hs,
|
||
apply Ht
|
||
end
|
||
|
||
protected theorem le_trans {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u)
|
||
(Lst : s_le s t) (Ltu : s_le t u) : s_le s u :=
|
||
begin
|
||
rewrite ↑s_le at *,
|
||
let Rz := zero_is_reg,
|
||
have Hsum : nonneg (sadd (sadd u (sneg t)) (sadd t (sneg s))),
|
||
from rat_seq.add_nonneg_of_nonneg Ltu Lst,
|
||
have H' : nonneg (sadd (sadd u (sadd (sneg t) t)) (sneg s)), begin
|
||
apply nonneg_of_nonneg_equiv,
|
||
rotate 2,
|
||
apply add_well_defined,
|
||
rotate 4,
|
||
apply s_add_assoc,
|
||
repeat (apply reg_add_reg | apply reg_neg_reg | assumption),
|
||
apply equiv.refl,
|
||
apply nonneg_of_nonneg_equiv,
|
||
rotate 2,
|
||
apply equiv.symm,
|
||
apply s_add_assoc,
|
||
rotate 2,
|
||
repeat (apply reg_add_reg | apply reg_neg_reg | assumption)
|
||
end,
|
||
have H'' : sadd (sadd u (sadd (sneg t) t)) (sneg s) ≡ sadd u (sneg s), begin
|
||
apply add_well_defined,
|
||
rotate 4,
|
||
apply equiv.trans,
|
||
rotate 3,
|
||
apply add_well_defined,
|
||
rotate 4,
|
||
apply equiv.refl,
|
||
apply s_neg_cancel,
|
||
rotate 1,
|
||
apply s_add_zero,
|
||
rotate 1,
|
||
apply equiv.refl,
|
||
repeat (apply reg_add_reg | apply reg_neg_reg | assumption)
|
||
end,
|
||
apply nonneg_of_nonneg_equiv,
|
||
rotate 2,
|
||
apply H'',
|
||
apply H',
|
||
repeat (apply reg_add_reg | apply reg_neg_reg | assumption)
|
||
end
|
||
|
||
theorem equiv_of_le_of_ge {s t : seq} (Hs : regular s) (Ht : regular t) (Lst : s_le s t)
|
||
(Lts : s_le t s) : s ≡ t :=
|
||
begin
|
||
apply equiv_of_diff_equiv_zero,
|
||
rotate 2,
|
||
rewrite [↑s_le at *, ↑nonneg at *, ↑equiv, ↑sadd at *, ↑sneg at *],
|
||
intros,
|
||
rewrite [↑zero, sub_zero],
|
||
apply abs_le_of_le_of_neg_le,
|
||
apply le_of_neg_le_neg,
|
||
rewrite [2 neg_add, neg_neg],
|
||
apply rat.le_trans,
|
||
apply neg_add_neg_le_neg_of_pos,
|
||
apply pnat.inv_pos,
|
||
rewrite add.comm,
|
||
apply Lst,
|
||
apply le_of_neg_le_neg,
|
||
rewrite [neg_add, neg_neg],
|
||
apply rat.le_trans,
|
||
apply neg_add_neg_le_neg_of_pos,
|
||
apply pnat.inv_pos,
|
||
apply Lts,
|
||
repeat assumption
|
||
end
|
||
|
||
definition sep (s t : seq) := s_lt s t ∨ s_lt t s
|
||
local infix `≢` : 50 := sep
|
||
|
||
theorem le_and_sep_of_lt {s t : seq} (Hs : regular s) (Ht : regular t) (Lst : s_lt s t) :
|
||
s_le s t ∧ sep s t :=
|
||
begin
|
||
apply and.intro,
|
||
intros,
|
||
cases Lst with [N, HN],
|
||
let Rns := reg_neg_reg Hs,
|
||
let Rtns := reg_add_reg Ht Rns,
|
||
let Habs := sub_le_of_abs_sub_le_right (Rtns N n),
|
||
rewrite [sub_add_eq_sub_sub at Habs],
|
||
exact (calc
|
||
sadd t (sneg s) n ≥ sadd t (sneg s) N - N⁻¹ - n⁻¹ : Habs
|
||
... ≥ 0 - n⁻¹: begin
|
||
apply sub_le_sub_right,
|
||
apply rat.le_of_lt,
|
||
apply (iff.mpr (sub_pos_iff_lt _ _)),
|
||
apply HN
|
||
end
|
||
... = -n⁻¹ : by rewrite zero_sub),
|
||
exact or.inl Lst
|
||
end
|
||
|
||
theorem lt_of_le_and_sep {s t : seq} (Hs : regular s) (Ht : regular t) (H : s_le s t ∧ sep s t) :
|
||
s_lt s t :=
|
||
begin
|
||
let Le := and.left H,
|
||
cases and.right H with [P, Hlt],
|
||
exact P,
|
||
rewrite [↑s_le at Le, ↑nonneg at Le, ↑s_lt at Hlt, ↑pos at Hlt],
|
||
apply exists.elim Hlt,
|
||
intro N HN,
|
||
let LeN := Le N,
|
||
let HN' := (iff.mpr !neg_lt_neg_iff_lt) HN,
|
||
rewrite [↑sadd at HN', ↑sneg at HN', neg_add at HN', neg_neg at HN', add.comm at HN'],
|
||
let HN'' := not_le_of_gt HN',
|
||
apply absurd LeN HN''
|
||
end
|
||
|
||
theorem lt_iff_le_and_sep {s t : seq} (Hs : regular s) (Ht : regular t) :
|
||
s_lt s t ↔ s_le s t ∧ sep s t :=
|
||
iff.intro (le_and_sep_of_lt Hs Ht) (lt_of_le_and_sep Hs Ht)
|
||
|
||
theorem s_neg_zero : sneg zero ≡ zero :=
|
||
begin
|
||
rewrite ↑[sneg, zero, equiv],
|
||
intros,
|
||
rewrite [sub_zero, abs_neg, abs_zero],
|
||
apply add_invs_nonneg
|
||
end
|
||
|
||
theorem s_sub_zero {s : seq} (Hs : regular s) : sadd s (sneg zero) ≡ s :=
|
||
begin
|
||
apply equiv.trans,
|
||
rotate 3,
|
||
apply add_well_defined,
|
||
rotate 4,
|
||
apply equiv.refl,
|
||
apply s_neg_zero,
|
||
apply s_add_zero,
|
||
repeat (assumption | apply reg_add_reg | apply reg_neg_reg | apply zero_is_reg)
|
||
end
|
||
|
||
theorem s_pos_of_gt_zero {s : seq} (Hs : regular s) (Hgz : s_lt zero s) : pos s :=
|
||
begin
|
||
rewrite [↑s_lt at *],
|
||
apply pos_of_pos_equiv,
|
||
rotate 1,
|
||
apply s_sub_zero,
|
||
repeat (assumption | apply reg_add_reg | apply reg_neg_reg),
|
||
apply zero_is_reg
|
||
end
|
||
|
||
theorem s_gt_zero_of_pos {s : seq} (Hs : regular s) (Hp : pos s) : s_lt zero s :=
|
||
begin
|
||
rewrite ↑s_lt,
|
||
apply pos_of_pos_equiv,
|
||
rotate 1,
|
||
apply equiv.symm,
|
||
apply s_sub_zero,
|
||
repeat assumption
|
||
end
|
||
|
||
theorem s_nonneg_of_ge_zero {s : seq} (Hs : regular s) (Hgz : s_le zero s) : nonneg s :=
|
||
begin
|
||
rewrite ↑s_le at *,
|
||
apply nonneg_of_nonneg_equiv,
|
||
rotate 2,
|
||
apply s_sub_zero,
|
||
repeat (assumption | apply reg_add_reg | apply reg_neg_reg | apply zero_is_reg)
|
||
end
|
||
|
||
theorem s_ge_zero_of_nonneg {s : seq} (Hs : regular s) (Hn : nonneg s) : s_le zero s :=
|
||
begin
|
||
rewrite ↑s_le,
|
||
apply nonneg_of_nonneg_equiv,
|
||
rotate 2,
|
||
apply equiv.symm,
|
||
apply s_sub_zero,
|
||
repeat (assumption | apply reg_add_reg | apply reg_neg_reg | apply zero_is_reg)
|
||
end
|
||
|
||
theorem s_mul_pos_of_pos {s t : seq} (Hs : regular s) (Ht : regular t) (Hps : pos s)
|
||
(Hpt : pos t) : pos (smul s t) :=
|
||
begin
|
||
rewrite [↑pos at *],
|
||
cases bdd_away_of_pos Hs Hps with [Ns, HNs],
|
||
cases bdd_away_of_pos Ht Hpt with [Nt, HNt],
|
||
existsi 2 * max Ns Nt * max Ns Nt,
|
||
rewrite ↑smul,
|
||
apply lt_of_lt_of_le,
|
||
rotate 1,
|
||
apply mul_le_mul,
|
||
apply HNs,
|
||
apply pnat.le_trans,
|
||
apply pnat.max_left Ns Nt,
|
||
rewrite -pnat.mul_assoc,
|
||
apply pnat.mul_le_mul_left,
|
||
apply HNt,
|
||
apply pnat.le_trans,
|
||
apply pnat.max_right Ns Nt,
|
||
rewrite -pnat.mul_assoc,
|
||
apply pnat.mul_le_mul_left,
|
||
apply rat.le_of_lt,
|
||
apply pnat.inv_pos,
|
||
apply rat.le_trans,
|
||
rotate 1,
|
||
apply HNs,
|
||
apply pnat.le_trans,
|
||
apply pnat.max_left Ns Nt,
|
||
rewrite -pnat.mul_assoc,
|
||
apply pnat.mul_le_mul_left,
|
||
rewrite pnat.inv_mul_eq_mul_inv,
|
||
apply mul_lt_mul,
|
||
rewrite [pnat.inv_mul_eq_mul_inv, -one_mul Ns⁻¹],
|
||
apply mul_lt_mul,
|
||
apply inv_lt_one_of_gt,
|
||
apply dec_trivial,
|
||
apply inv_ge_of_le,
|
||
apply pnat.max_left,
|
||
apply pnat.inv_pos,
|
||
apply rat.le_of_lt zero_lt_one,
|
||
apply inv_ge_of_le,
|
||
apply pnat.max_right,
|
||
apply pnat.inv_pos,
|
||
repeat (apply le_of_lt; apply pnat.inv_pos)
|
||
end
|
||
|
||
theorem s_mul_gt_zero_of_gt_zero {s t : seq} (Hs : regular s) (Ht : regular t)
|
||
(Hzs : s_lt zero s) (Hzt : s_lt zero t) : s_lt zero (smul s t) :=
|
||
s_gt_zero_of_pos
|
||
(reg_mul_reg Hs Ht)
|
||
(s_mul_pos_of_pos Hs Ht (s_pos_of_gt_zero Hs Hzs) (s_pos_of_gt_zero Ht Hzt))
|
||
|
||
theorem le_of_lt_or_equiv {s t : seq} (Hs : regular s) (Ht : regular t)
|
||
(Hor : (s_lt s t) ∨ (s ≡ t)) : s_le s t :=
|
||
or.elim Hor
|
||
(begin
|
||
intro Hlt,
|
||
apply s_le_of_s_lt Hs Ht Hlt
|
||
end)
|
||
(begin
|
||
intro Heq,
|
||
rewrite ↑s_le,
|
||
apply nonneg_of_nonneg_equiv,
|
||
rotate 3,
|
||
apply zero_nonneg,
|
||
apply zero_is_reg,
|
||
apply reg_add_reg Ht (reg_neg_reg Hs),
|
||
apply equiv.symm,
|
||
apply diff_equiv_zero_of_equiv,
|
||
rotate 2,
|
||
apply equiv.symm,
|
||
apply Heq,
|
||
repeat assumption
|
||
end)
|
||
|
||
theorem s_zero_mul {s : seq} : smul s zero ≡ zero :=
|
||
begin
|
||
rewrite [↑equiv, ↑smul, ↑zero],
|
||
intros,
|
||
rewrite [mul_zero, sub_zero, abs_zero],
|
||
apply add_invs_nonneg
|
||
end
|
||
|
||
theorem s_mul_nonneg_of_pos_of_zero {s t : seq} (Hs : regular s) (Ht : regular t)
|
||
(Hps : pos s) (Hpt : zero ≡ t) : nonneg (smul s t) :=
|
||
begin
|
||
apply nonneg_of_nonneg_equiv,
|
||
rotate 2,
|
||
apply mul_well_defined,
|
||
rotate 4,
|
||
apply equiv.refl,
|
||
apply Hpt,
|
||
apply nonneg_of_nonneg_equiv,
|
||
rotate 2,
|
||
apply equiv.symm,
|
||
apply s_zero_mul,
|
||
apply zero_nonneg,
|
||
repeat (assumption | apply reg_mul_reg | apply zero_is_reg)
|
||
end
|
||
|
||
theorem s_mul_nonneg_of_nonneg {s t : seq} (Hs : regular s) (Ht : regular t)
|
||
(Hps : nonneg s) (Hpt : nonneg t) : nonneg (smul s t) :=
|
||
begin
|
||
intro n,
|
||
rewrite ↑smul,
|
||
apply rat.le_by_cases 0 (s (((K₂ s t) * 2) * n)),
|
||
intro Hsp,
|
||
apply rat.le_by_cases 0 (t (((K₂ s t) * 2) * n)),
|
||
intro Htp,
|
||
apply rat.le_trans,
|
||
rotate 1,
|
||
apply rat.mul_nonneg Hsp Htp,
|
||
rotate_right 1,
|
||
apply le_of_lt,
|
||
apply neg_neg_of_pos,
|
||
apply pnat.inv_pos,
|
||
intro Htn,
|
||
apply rat.le_trans,
|
||
rotate 1,
|
||
apply mul_le_mul_of_nonpos_right,
|
||
apply rat.le_trans,
|
||
apply le_abs_self,
|
||
apply canon_2_bound_left s t Hs,
|
||
apply Htn,
|
||
rotate_right 1,
|
||
apply rat.le_trans,
|
||
rotate 1,
|
||
apply mul_le_mul_of_nonneg_left,
|
||
apply Hpt,
|
||
apply le_of_lt,
|
||
apply rat_of_pnat_is_pos,
|
||
rotate 1,
|
||
rewrite -neg_mul_eq_mul_neg,
|
||
apply neg_le_neg,
|
||
rewrite [*pnat.mul_assoc, pnat.inv_mul_eq_mul_inv, -mul.assoc, pnat.inv_cancel_left, one_mul],
|
||
apply inv_ge_of_le,
|
||
apply pnat.mul_le_mul_left,
|
||
intro Hsn,
|
||
apply rat.le_by_cases 0 (t (((K₂ s t) * 2) * n)),
|
||
intro Htp,
|
||
apply rat.le_trans,
|
||
rotate 1,
|
||
apply mul_le_mul_of_nonpos_left,
|
||
apply rat.le_trans,
|
||
apply le_abs_self,
|
||
apply canon_2_bound_right s t Ht,
|
||
apply Hsn,
|
||
rotate_right 1,
|
||
apply rat.le_trans,
|
||
rotate 1,
|
||
apply mul_le_mul_of_nonneg_right,
|
||
apply Hps,
|
||
apply le_of_lt,
|
||
apply rat_of_pnat_is_pos,
|
||
rotate 1,
|
||
rewrite -neg_mul_eq_neg_mul,
|
||
apply neg_le_neg,
|
||
rewrite [+pnat.mul_assoc, pnat.inv_mul_eq_mul_inv, mul.comm, -mul.assoc, pnat.inv_cancel_left,
|
||
one_mul],
|
||
apply inv_ge_of_le,
|
||
apply pnat.mul_le_mul_left,
|
||
intro Htn,
|
||
apply le.trans,
|
||
rotate 1,
|
||
apply mul_nonneg_of_nonpos_of_nonpos,
|
||
apply Hsn,
|
||
apply Htn,
|
||
apply le_of_lt,
|
||
apply neg_neg_of_pos,
|
||
apply pnat.inv_pos
|
||
end
|
||
|
||
theorem s_mul_ge_zero_of_ge_zero {s t : seq} (Hs : regular s) (Ht : regular t)
|
||
(Hzs : s_le zero s) (Hzt : s_le zero t) : s_le zero (smul s t) :=
|
||
begin
|
||
let Hzs' := s_nonneg_of_ge_zero Hs Hzs,
|
||
let Htz' := s_nonneg_of_ge_zero Ht Hzt,
|
||
apply s_ge_zero_of_nonneg,
|
||
rotate 1,
|
||
apply s_mul_nonneg_of_nonneg,
|
||
repeat assumption,
|
||
apply reg_mul_reg Hs Ht
|
||
end
|
||
|
||
protected theorem not_lt_self (s : seq) : ¬ s_lt s s :=
|
||
begin
|
||
intro Hlt,
|
||
rewrite [↑s_lt at Hlt, ↑pos at Hlt],
|
||
apply exists.elim Hlt,
|
||
intro n Hn, esimp at Hn,
|
||
rewrite [↑sadd at Hn,↑sneg at Hn, -sub_eq_add_neg at Hn, sub_self at Hn],
|
||
apply absurd Hn (not_lt_of_ge (rat.le_of_lt !pnat.inv_pos))
|
||
end
|
||
|
||
theorem not_sep_self (s : seq) : ¬ s ≢ s :=
|
||
begin
|
||
intro Hsep,
|
||
rewrite ↑sep at Hsep,
|
||
let Hsep' := (iff.mp !or_self) Hsep,
|
||
apply absurd Hsep' (!rat_seq.not_lt_self)
|
||
end
|
||
|
||
theorem le_well_defined {s t u v : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u)
|
||
(Hv : regular v) (Hsu : s ≡ u) (Htv : t ≡ v) : s_le s t ↔ s_le u v :=
|
||
iff.intro
|
||
(begin
|
||
intro Hle,
|
||
rewrite [↑s_le at *],
|
||
apply nonneg_of_nonneg_equiv,
|
||
rotate 2,
|
||
apply add_well_defined,
|
||
rotate 4,
|
||
apply Htv,
|
||
apply neg_well_defined,
|
||
apply Hsu,
|
||
apply Hle,
|
||
repeat (apply reg_add_reg | apply reg_neg_reg | assumption)
|
||
end)
|
||
(begin
|
||
intro Hle,
|
||
rewrite [↑s_le at *],
|
||
apply nonneg_of_nonneg_equiv,
|
||
rotate 2,
|
||
apply add_well_defined,
|
||
rotate 4,
|
||
apply equiv.symm, apply Htv,
|
||
apply neg_well_defined,
|
||
apply equiv.symm, apply Hsu,
|
||
apply Hle,
|
||
repeat (apply reg_add_reg | apply reg_neg_reg | assumption)
|
||
end)
|
||
|
||
theorem lt_well_defined {s t u v : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u)
|
||
(Hv : regular v) (Hsu : s ≡ u) (Htv : t ≡ v) : s_lt s t ↔ s_lt u v :=
|
||
iff.intro
|
||
(begin
|
||
intro Hle,
|
||
rewrite [↑s_lt at *],
|
||
apply pos_of_pos_equiv,
|
||
rotate 1,
|
||
apply add_well_defined,
|
||
rotate 4,
|
||
apply Htv,
|
||
apply neg_well_defined,
|
||
apply Hsu,
|
||
apply Hle,
|
||
repeat (apply reg_add_reg | apply reg_neg_reg | assumption)
|
||
end)
|
||
(begin
|
||
intro Hle,
|
||
rewrite [↑s_lt at *],
|
||
apply pos_of_pos_equiv,
|
||
rotate 1,
|
||
apply add_well_defined,
|
||
rotate 4,
|
||
apply equiv.symm, apply Htv,
|
||
apply neg_well_defined,
|
||
apply equiv.symm, apply Hsu,
|
||
apply Hle,
|
||
repeat (apply reg_add_reg | apply reg_neg_reg | assumption)
|
||
end)
|
||
|
||
theorem sep_well_defined {s t u v : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u)
|
||
(Hv : regular v) (Hsu : s ≡ u) (Htv : t ≡ v) : s ≢ t ↔ u ≢ v :=
|
||
begin
|
||
rewrite ↑sep,
|
||
apply iff.intro,
|
||
intro Hor,
|
||
apply or.elim Hor,
|
||
intro Hlt,
|
||
apply or.inl,
|
||
apply iff.mp (lt_well_defined Hs Ht Hu Hv Hsu Htv),
|
||
assumption,
|
||
intro Hlt,
|
||
apply or.inr,
|
||
apply iff.mp (lt_well_defined Ht Hs Hv Hu Htv Hsu),
|
||
assumption,
|
||
intro Hor,
|
||
apply or.elim Hor,
|
||
intro Hlt,
|
||
apply or.inl,
|
||
apply iff.mpr (lt_well_defined Hs Ht Hu Hv Hsu Htv),
|
||
assumption,
|
||
intro Hlt,
|
||
apply or.inr,
|
||
apply iff.mpr (lt_well_defined Ht Hs Hv Hu Htv Hsu),
|
||
assumption
|
||
end
|
||
|
||
theorem s_lt_of_lt_of_le {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u)
|
||
(Hst : s_lt s t) (Htu : s_le t u) : s_lt s u :=
|
||
begin
|
||
let Rtns := reg_add_reg Ht (reg_neg_reg Hs),
|
||
let Runt := reg_add_reg Hu (reg_neg_reg Ht),
|
||
have Hcan : ∀ m, sadd u (sneg s) m = (sadd t (sneg s)) m + (sadd u (sneg t)) m, begin
|
||
intro m,
|
||
rewrite [↑sadd, ↑sneg, -*sub_eq_add_neg, -sub_eq_sub_add_sub]
|
||
end,
|
||
rewrite [↑s_lt at *, ↑s_le at *],
|
||
cases bdd_away_of_pos Rtns Hst with [Nt, HNt],
|
||
cases bdd_within_of_nonneg Runt Htu (2 * Nt) with [Nu, HNu],
|
||
apply pos_of_bdd_away,
|
||
existsi max (2 * Nt) Nu,
|
||
intro n Hn,
|
||
rewrite Hcan,
|
||
apply rat.le_trans,
|
||
rotate 1,
|
||
apply add_le_add,
|
||
apply HNt,
|
||
apply pnat.le_trans,
|
||
apply pnat.mul_le_mul_left 2,
|
||
apply pnat.le_trans,
|
||
rotate 1,
|
||
apply Hn,
|
||
rotate_right 1,
|
||
apply pnat.max_left,
|
||
apply HNu,
|
||
apply pnat.le_trans,
|
||
rotate 1,
|
||
apply Hn,
|
||
rotate_right 1,
|
||
apply pnat.max_right,
|
||
rewrite [-pnat.add_halves Nt, -sub_eq_add_neg, add_sub_cancel],
|
||
apply inv_ge_of_le,
|
||
apply pnat.max_left
|
||
end
|
||
|
||
theorem s_lt_of_le_of_lt {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u)
|
||
(Hst : s_le s t) (Htu : s_lt t u) : s_lt s u :=
|
||
begin
|
||
let Rtns := reg_add_reg Ht (reg_neg_reg Hs),
|
||
let Runt := reg_add_reg Hu (reg_neg_reg Ht),
|
||
have Hcan : ∀ m, sadd u (sneg s) m = (sadd t (sneg s)) m + (sadd u (sneg t)) m, begin
|
||
intro m,
|
||
rewrite [↑sadd, ↑sneg, -*sub_eq_add_neg, -sub_eq_sub_add_sub]
|
||
end,
|
||
rewrite [↑s_lt at *, ↑s_le at *],
|
||
cases bdd_away_of_pos Runt Htu with [Nu, HNu],
|
||
cases bdd_within_of_nonneg Rtns Hst (2 * Nu) with [Nt, HNt],
|
||
apply pos_of_bdd_away,
|
||
existsi max (2 * Nu) Nt,
|
||
intro n Hn,
|
||
rewrite Hcan,
|
||
apply rat.le_trans,
|
||
rotate 1,
|
||
apply add_le_add,
|
||
apply HNt,
|
||
apply pnat.le_trans,
|
||
rotate 1,
|
||
apply Hn,
|
||
rotate_right 1,
|
||
apply pnat.max_right,
|
||
apply HNu,
|
||
apply pnat.le_trans,
|
||
apply pnat.mul_le_mul_left 2,
|
||
apply pnat.le_trans,
|
||
rotate 1,
|
||
apply Hn,
|
||
rotate_right 1,
|
||
apply pnat.max_left,
|
||
rewrite [-pnat.add_halves Nu, neg_add_cancel_left],
|
||
apply inv_ge_of_le,
|
||
apply pnat.max_left
|
||
end
|
||
|
||
theorem le_of_le_reprs {s t : seq} (Hs : regular s) (Ht : regular t)
|
||
(Hle : ∀ n : ℕ+, s_le s (const (t n))) : s_le s t :=
|
||
by intro m; apply Hle (2 * m) m
|
||
|
||
theorem le_of_reprs_le {s t : seq} (Hs : regular s) (Ht : regular t)
|
||
(Hle : ∀ n : ℕ+, s_le (const (t n)) s) : s_le t s :=
|
||
by intro m; apply Hle (2 * m) m
|
||
|
||
-----------------------------
|
||
-- of_rat theorems
|
||
|
||
theorem const_le_const_of_le {a b : ℚ} (H : a ≤ b) : s_le (const a) (const b) :=
|
||
begin
|
||
rewrite [↑s_le, ↑nonneg],
|
||
intro n,
|
||
rewrite [↑sadd, ↑sneg, ↑const],
|
||
apply le.trans,
|
||
apply neg_nonpos_of_nonneg,
|
||
apply rat.le_of_lt,
|
||
apply pnat.inv_pos,
|
||
apply iff.mpr !sub_nonneg_iff_le,
|
||
apply H
|
||
end
|
||
|
||
theorem le_of_const_le_const {a b : ℚ} (H : s_le (const a) (const b)) : a ≤ b :=
|
||
begin
|
||
rewrite [↑s_le at H, ↑nonneg at H, ↑sadd at H, ↑sneg at H, ↑const at H],
|
||
apply iff.mp !sub_nonneg_iff_le,
|
||
apply nonneg_of_ge_neg_invs _ H
|
||
end
|
||
|
||
theorem nat_inv_lt_rat {a : ℚ} (H : a > 0) : ∃ n : ℕ+, n⁻¹ < a :=
|
||
begin
|
||
existsi (pceil (1 / (a / (2)))),
|
||
apply lt_of_le_of_lt,
|
||
rotate 1,
|
||
apply div_two_lt_of_pos H,
|
||
rewrite -(one_div_one_div (a / (1 + 1))),
|
||
apply pceil_helper,
|
||
apply pnat.le_refl,
|
||
apply one_div_pos_of_pos,
|
||
apply div_pos_of_pos_of_pos H dec_trivial
|
||
end
|
||
|
||
|
||
theorem const_lt_const_of_lt {a b : ℚ} (H : a < b) : s_lt (const a) (const b) :=
|
||
begin
|
||
rewrite [↑s_lt, ↑pos, ↑sadd, ↑sneg, ↑const],
|
||
apply nat_inv_lt_rat,
|
||
apply (iff.mpr !sub_pos_iff_lt H)
|
||
end
|
||
|
||
theorem lt_of_const_lt_const {a b : ℚ} (H : s_lt (const a) (const b)) : a < b :=
|
||
begin
|
||
rewrite [↑s_lt at H, ↑pos at H, ↑const at H, ↑sadd at H, ↑sneg at H],
|
||
cases H with [n, Hn],
|
||
apply (iff.mp !sub_pos_iff_lt),
|
||
apply lt.trans,
|
||
rotate 1,
|
||
exact Hn,
|
||
apply pnat.inv_pos
|
||
end
|
||
|
||
theorem s_le_of_le_pointwise {s t : seq} (Hs : regular s) (Ht : regular t)
|
||
(H : ∀ n : ℕ+, s n ≤ t n) : s_le s t :=
|
||
begin
|
||
rewrite [↑s_le, ↑nonneg, ↑sadd, ↑sneg],
|
||
intros,
|
||
apply le.trans,
|
||
apply iff.mpr !neg_nonpos_iff_nonneg,
|
||
apply le_of_lt,
|
||
apply pnat.inv_pos,
|
||
apply iff.mpr !sub_nonneg_iff_le,
|
||
apply H
|
||
end
|
||
|
||
-------- lift to reg_seqs
|
||
definition r_lt (s t : reg_seq) := s_lt (reg_seq.sq s) (reg_seq.sq t)
|
||
definition r_le (s t : reg_seq) := s_le (reg_seq.sq s) (reg_seq.sq t)
|
||
definition r_sep (s t : reg_seq) := sep (reg_seq.sq s) (reg_seq.sq t)
|
||
|
||
theorem r_le_well_defined (s t u v : reg_seq) (Hsu : requiv s u) (Htv : requiv t v)
|
||
: r_le s t = r_le u v :=
|
||
propext (le_well_defined (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u)
|
||
(reg_seq.is_reg v) Hsu Htv)
|
||
|
||
|
||
theorem r_lt_well_defined (s t u v : reg_seq) (Hsu : requiv s u) (Htv : requiv t v)
|
||
: r_lt s t = r_lt u v :=
|
||
propext (lt_well_defined (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u)
|
||
(reg_seq.is_reg v) Hsu Htv)
|
||
|
||
theorem r_sep_well_defined (s t u v : reg_seq) (Hsu : requiv s u) (Htv : requiv t v)
|
||
: r_sep s t = r_sep u v :=
|
||
propext (sep_well_defined (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u)
|
||
(reg_seq.is_reg v) Hsu Htv)
|
||
|
||
theorem r_le.refl (s : reg_seq) : r_le s s := rat_seq.le_refl (reg_seq.is_reg s)
|
||
|
||
theorem r_le.trans {s t u : reg_seq} (Hst : r_le s t) (Htu : r_le t u) : r_le s u :=
|
||
rat_seq.le_trans (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) Hst Htu
|
||
|
||
theorem r_equiv_of_le_of_ge {s t : reg_seq} (Hs : r_le s t) (Hu : r_le t s) :
|
||
requiv s t :=
|
||
equiv_of_le_of_ge (reg_seq.is_reg s) (reg_seq.is_reg t) Hs Hu
|
||
|
||
theorem r_lt_iff_le_and_sep (s t : reg_seq) : r_lt s t ↔ r_le s t ∧ r_sep s t :=
|
||
lt_iff_le_and_sep (reg_seq.is_reg s) (reg_seq.is_reg t)
|
||
|
||
theorem r_add_le_add_of_le_right {s t : reg_seq} (H : r_le s t) (u : reg_seq) :
|
||
r_le (u + s) (u + t) :=
|
||
rat_seq.add_le_add_of_le_right (reg_seq.is_reg s) (reg_seq.is_reg t) H
|
||
(reg_seq.sq u) (reg_seq.is_reg u)
|
||
|
||
theorem r_add_le_add_of_le_right_var (s t u : reg_seq) (H : r_le s t) :
|
||
r_le (u + s) (u + t) := r_add_le_add_of_le_right H u
|
||
|
||
theorem r_mul_pos_of_pos {s t : reg_seq} (Hs : r_lt r_zero s) (Ht : r_lt r_zero t) :
|
||
r_lt r_zero (s * t) :=
|
||
s_mul_gt_zero_of_gt_zero (reg_seq.is_reg s) (reg_seq.is_reg t) Hs Ht
|
||
|
||
theorem r_mul_nonneg_of_nonneg {s t : reg_seq} (Hs : r_le r_zero s) (Ht : r_le r_zero t) :
|
||
r_le r_zero (s * t) :=
|
||
s_mul_ge_zero_of_ge_zero (reg_seq.is_reg s) (reg_seq.is_reg t) Hs Ht
|
||
|
||
theorem r_not_lt_self (s : reg_seq) : ¬ r_lt s s :=
|
||
rat_seq.not_lt_self (reg_seq.sq s)
|
||
|
||
theorem r_not_sep_self (s : reg_seq) : ¬ r_sep s s :=
|
||
not_sep_self (reg_seq.sq s)
|
||
|
||
theorem r_le_of_lt {s t : reg_seq} (H : r_lt s t) : r_le s t :=
|
||
s_le_of_s_lt (reg_seq.is_reg s) (reg_seq.is_reg t) H
|
||
|
||
theorem r_lt_of_le_of_lt {s t u : reg_seq} (Hst : r_le s t) (Htu : r_lt t u) : r_lt s u :=
|
||
s_lt_of_le_of_lt (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) Hst Htu
|
||
|
||
theorem r_lt_of_lt_of_le {s t u : reg_seq} (Hst : r_lt s t) (Htu : r_le t u) : r_lt s u :=
|
||
s_lt_of_lt_of_le (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) Hst Htu
|
||
|
||
theorem r_add_lt_add_left (s t : reg_seq) (H : r_lt s t) (u : reg_seq) : r_lt (u + s) (u + t) :=
|
||
s_add_lt_add_left (reg_seq.is_reg s) (reg_seq.is_reg t) H (reg_seq.is_reg u)
|
||
|
||
theorem r_add_lt_add_left_var (s t u : reg_seq) (H : r_lt s t) : r_lt (u + s) (u + t) :=
|
||
r_add_lt_add_left s t H u
|
||
|
||
theorem r_zero_lt_one : r_lt r_zero r_one := s_zero_lt_one
|
||
|
||
theorem r_le_of_lt_or_eq (s t : reg_seq) (H : r_lt s t ∨ requiv s t) : r_le s t :=
|
||
le_of_lt_or_equiv (reg_seq.is_reg s) (reg_seq.is_reg t) H
|
||
|
||
theorem r_const_le_const_of_le {a b : ℚ} (H : a ≤ b) : r_le (r_const a) (r_const b) :=
|
||
const_le_const_of_le H
|
||
|
||
theorem r_le_of_const_le_const {a b : ℚ} (H : r_le (r_const a) (r_const b)) : a ≤ b :=
|
||
le_of_const_le_const H
|
||
|
||
theorem r_const_lt_const_of_lt {a b : ℚ} (H : a < b) : r_lt (r_const a) (r_const b) :=
|
||
const_lt_const_of_lt H
|
||
|
||
theorem r_lt_of_const_lt_const {a b : ℚ} (H : r_lt (r_const a) (r_const b)) : a < b :=
|
||
lt_of_const_lt_const H
|
||
|
||
theorem r_le_of_le_reprs (s t : reg_seq) (Hle : ∀ n : ℕ+, r_le s (r_const (reg_seq.sq t n))) : r_le s t :=
|
||
le_of_le_reprs (reg_seq.is_reg s) (reg_seq.is_reg t) Hle
|
||
|
||
theorem r_le_of_reprs_le (s t : reg_seq) (Hle : ∀ n : ℕ+, r_le (r_const (reg_seq.sq t n)) s) :
|
||
r_le t s :=
|
||
le_of_reprs_le (reg_seq.is_reg s) (reg_seq.is_reg t) Hle
|
||
|
||
end rat_seq
|
||
|
||
open real
|
||
open [classes] rat_seq
|
||
namespace real
|
||
|
||
protected definition lt (x y : ℝ) :=
|
||
quot.lift_on₂ x y (λ a b, rat_seq.r_lt a b) rat_seq.r_lt_well_defined
|
||
protected definition le (x y : ℝ) :=
|
||
quot.lift_on₂ x y (λ a b, rat_seq.r_le a b) rat_seq.r_le_well_defined
|
||
|
||
definition real_has_lt [reducible] [instance] [priority real.prio] : has_lt ℝ :=
|
||
has_lt.mk real.lt
|
||
|
||
definition real_has_le [reducible] [instance] [priority real.prio] : has_le ℝ :=
|
||
has_le.mk real.le
|
||
|
||
definition sep (x y : ℝ) := quot.lift_on₂ x y (λ a b, rat_seq.r_sep a b) rat_seq.r_sep_well_defined
|
||
infix `≢` : 50 := sep
|
||
|
||
protected theorem le_refl (x : ℝ) : x ≤ x :=
|
||
quot.induction_on x (λ t, rat_seq.r_le.refl t)
|
||
|
||
protected theorem le_trans {x y z : ℝ} : x ≤ y → y ≤ z → x ≤ z :=
|
||
quot.induction_on₃ x y z (λ s t u, rat_seq.r_le.trans)
|
||
|
||
protected theorem eq_of_le_of_ge {x y : ℝ} : x ≤ y → y ≤ x → x = y :=
|
||
quot.induction_on₂ x y (λ s t Hst Hts, quot.sound (rat_seq.r_equiv_of_le_of_ge Hst Hts))
|
||
|
||
theorem lt_iff_le_and_sep (x y : ℝ) : x < y ↔ x ≤ y ∧ x ≢ y :=
|
||
quot.induction_on₂ x y (λ s t, rat_seq.r_lt_iff_le_and_sep s t)
|
||
|
||
protected theorem add_le_add_left' (x y z : ℝ) : x ≤ y → z + x ≤ z + y :=
|
||
quot.induction_on₃ x y z (λ s t u, rat_seq.r_add_le_add_of_le_right_var s t u)
|
||
|
||
protected theorem add_le_add_left (x y : ℝ) : x ≤ y → ∀ z : ℝ, z + x ≤ z + y :=
|
||
take H z, real.add_le_add_left' x y z H
|
||
|
||
protected theorem mul_pos (x y : ℝ) : 0 < x → 0 < y → 0 < x * y :=
|
||
quot.induction_on₂ x y (λ s t, rat_seq.r_mul_pos_of_pos)
|
||
|
||
protected theorem mul_nonneg (x y : ℝ) : 0 ≤ x → 0 ≤ y → 0 ≤ x * y :=
|
||
quot.induction_on₂ x y (λ s t, rat_seq.r_mul_nonneg_of_nonneg)
|
||
|
||
theorem not_sep_self (x : ℝ) : ¬ x ≢ x :=
|
||
quot.induction_on x (λ s, rat_seq.r_not_sep_self s)
|
||
|
||
protected theorem lt_irrefl (x : ℝ) : ¬ x < x :=
|
||
quot.induction_on x (λ s, rat_seq.r_not_lt_self s)
|
||
|
||
protected theorem le_of_lt {x y : ℝ} : x < y → x ≤ y :=
|
||
quot.induction_on₂ x y (λ s t H', rat_seq.r_le_of_lt H')
|
||
|
||
protected theorem lt_of_le_of_lt {x y z : ℝ} : x ≤ y → y < z → x < z :=
|
||
quot.induction_on₃ x y z (λ s t u H H', rat_seq.r_lt_of_le_of_lt H H')
|
||
|
||
protected theorem lt_of_lt_of_le {x y z : ℝ} : x < y → y ≤ z → x < z :=
|
||
quot.induction_on₃ x y z (λ s t u H H', rat_seq.r_lt_of_lt_of_le H H')
|
||
|
||
protected theorem add_lt_add_left' (x y z : ℝ) : x < y → z + x < z + y :=
|
||
quot.induction_on₃ x y z (λ s t u, rat_seq.r_add_lt_add_left_var s t u)
|
||
|
||
protected theorem add_lt_add_left (x y : ℝ) : x < y → ∀ z : ℝ, z + x < z + y :=
|
||
take H z, real.add_lt_add_left' x y z H
|
||
|
||
protected theorem zero_lt_one : (0 : ℝ) < (1 : ℝ) := rat_seq.r_zero_lt_one
|
||
|
||
protected theorem le_of_lt_or_eq (x y : ℝ) : x < y ∨ x = y → x ≤ y :=
|
||
(quot.induction_on₂ x y (λ s t H, or.elim H (take H', begin
|
||
apply rat_seq.r_le_of_lt_or_eq,
|
||
apply or.inl H'
|
||
end)
|
||
(take H', begin
|
||
apply rat_seq.r_le_of_lt_or_eq,
|
||
apply (or.inr (quot.exact H'))
|
||
end)))
|
||
|
||
definition ordered_ring [reducible] [instance] : ordered_ring ℝ :=
|
||
⦃ ordered_ring, real.comm_ring,
|
||
le_refl := real.le_refl,
|
||
le_trans := @real.le_trans,
|
||
mul_pos := real.mul_pos,
|
||
mul_nonneg := real.mul_nonneg,
|
||
zero_ne_one := real.zero_ne_one,
|
||
add_le_add_left := real.add_le_add_left,
|
||
le_antisymm := @real.eq_of_le_of_ge,
|
||
lt_irrefl := real.lt_irrefl,
|
||
lt_of_le_of_lt := @real.lt_of_le_of_lt,
|
||
lt_of_lt_of_le := @real.lt_of_lt_of_le,
|
||
le_of_lt := @real.le_of_lt,
|
||
add_lt_add_left := real.add_lt_add_left
|
||
⦄
|
||
|
||
open int
|
||
theorem of_rat_sub (a b : ℚ) : of_rat (a - b) = of_rat a - of_rat b := rfl
|
||
|
||
theorem of_int_sub (a b : ℤ) : of_int (a - b) = of_int a - of_int b :=
|
||
by rewrite [of_int_eq, rat.of_int_sub, of_rat_sub]
|
||
|
||
theorem of_rat_le_of_rat_of_le {a b : ℚ} : a ≤ b → of_rat a ≤ of_rat b :=
|
||
rat_seq.r_const_le_const_of_le
|
||
|
||
theorem le_of_of_rat_le_of_rat {a b : ℚ} : of_rat a ≤ of_rat b → a ≤ b :=
|
||
rat_seq.r_le_of_const_le_const
|
||
|
||
theorem of_rat_le_of_rat_iff (a b : ℚ) : of_rat a ≤ of_rat b ↔ a ≤ b :=
|
||
iff.intro le_of_of_rat_le_of_rat of_rat_le_of_rat_of_le
|
||
|
||
theorem of_rat_lt_of_rat_of_lt {a b : ℚ} : a < b → of_rat a < of_rat b :=
|
||
rat_seq.r_const_lt_const_of_lt
|
||
|
||
theorem lt_of_of_rat_lt_of_rat {a b : ℚ} : of_rat a < of_rat b → a < b :=
|
||
rat_seq.r_lt_of_const_lt_const
|
||
|
||
theorem of_rat_lt_of_rat_iff (a b : ℚ) : of_rat a < of_rat b ↔ a < b :=
|
||
iff.intro lt_of_of_rat_lt_of_rat of_rat_lt_of_rat_of_lt
|
||
|
||
theorem of_int_le_of_int_iff (a b : ℤ) : of_int a ≤ of_int b ↔ (a ≤ b) :=
|
||
begin rewrite [+of_int_eq, of_rat_le_of_rat_iff], apply rat.of_int_le_of_int_iff end
|
||
|
||
theorem of_int_le_of_int_of_le {a b : ℤ} : (a ≤ b) → of_int a ≤ of_int b :=
|
||
iff.mpr !of_int_le_of_int_iff
|
||
|
||
theorem le_of_of_int_le_of_int {a b : ℤ} : of_int a ≤ of_int b → (a ≤ b) :=
|
||
iff.mp !of_int_le_of_int_iff
|
||
|
||
theorem of_int_lt_of_int_iff (a b : ℤ) : of_int a < of_int b ↔ (a < b) :=
|
||
by rewrite [*of_int_eq, of_rat_lt_of_rat_iff]; apply rat.of_int_lt_of_int_iff
|
||
|
||
theorem of_int_lt_of_int_of_lt {a b : ℤ} : (a < b) → of_int a < of_int b :=
|
||
iff.mpr !of_int_lt_of_int_iff
|
||
|
||
theorem lt_of_of_int_lt_of_int {a b : ℤ} : of_int a < of_int b → (a < b) :=
|
||
iff.mp !of_int_lt_of_int_iff
|
||
|
||
theorem of_nat_le_of_nat_iff (a b : ℕ) : of_nat a ≤ of_nat b ↔ (a ≤ b) :=
|
||
by rewrite [*of_nat_eq, of_rat_le_of_rat_iff]; apply rat.of_nat_le_of_nat_iff
|
||
|
||
theorem of_nat_le_of_nat_of_le {a b : ℕ} : (a ≤ b) → of_nat a ≤ of_nat b :=
|
||
iff.mpr !of_nat_le_of_nat_iff
|
||
|
||
theorem le_of_of_nat_le_of_nat {a b : ℕ} : of_nat a ≤ of_nat b → (a ≤ b) :=
|
||
iff.mp !of_nat_le_of_nat_iff
|
||
|
||
theorem of_nat_lt_of_nat_iff (a b : ℕ) : of_nat a < of_nat b ↔ (a < b) :=
|
||
by rewrite [*of_nat_eq, of_rat_lt_of_rat_iff]; apply rat.of_nat_lt_of_nat_iff
|
||
|
||
theorem of_nat_lt_of_nat_of_lt {a b : ℕ} : (a < b) → of_nat a < of_nat b :=
|
||
iff.mpr !of_nat_lt_of_nat_iff
|
||
|
||
theorem lt_of_of_nat_lt_of_nat {a b : ℕ} : of_nat a < of_nat b → (a < b) :=
|
||
iff.mp !of_nat_lt_of_nat_iff
|
||
|
||
theorem of_nat_nonneg (a : ℕ) : of_nat a ≥ 0 :=
|
||
of_rat_le_of_rat_of_le !rat.of_nat_nonneg
|
||
|
||
theorem of_rat_pow (a : ℚ) (n : ℕ) : of_rat (a^n) = (of_rat a)^n :=
|
||
begin
|
||
induction n with n ih,
|
||
apply eq.refl,
|
||
rewrite [2 pow_succ, of_rat_mul, ih]
|
||
end
|
||
|
||
theorem of_int_pow (a : ℤ) (n : ℕ) : of_int (#int a^n) = (of_int a)^n :=
|
||
by rewrite [of_int_eq, rat.of_int_pow, of_rat_pow]
|
||
|
||
theorem of_nat_pow (a : ℕ) (n : ℕ) : of_nat (#nat a^n) = (of_nat a)^n :=
|
||
by rewrite [of_nat_eq, rat.of_nat_pow, of_rat_pow]
|
||
|
||
open rat_seq
|
||
theorem le_of_le_reprs (x : ℝ) (t : seq) (Ht : regular t) : (∀ n : ℕ+, x ≤ t n) →
|
||
x ≤ quot.mk (reg_seq.mk t Ht) :=
|
||
quot.induction_on x (take s Hs,
|
||
show r_le s (reg_seq.mk t Ht), from
|
||
have H' : ∀ n : ℕ+, r_le s (r_const (t n)), from Hs,
|
||
by apply r_le_of_le_reprs; apply Hs)
|
||
|
||
theorem le_of_reprs_le (x : ℝ) (t : seq) (Ht : regular t) : (∀ n : ℕ+, t n ≤ x) →
|
||
x ≥ ((quot.mk (reg_seq.mk t Ht)) : ℝ) :=
|
||
quot.induction_on x (take s Hs,
|
||
show r_le (reg_seq.mk t Ht) s, from
|
||
have H' : ∀ n : ℕ+, r_le (r_const (t n)) s, from Hs,
|
||
by apply r_le_of_reprs_le; apply Hs)
|
||
|
||
end real
|