lean2/library/data/set/function.lean

64 lines
2.3 KiB
Text

/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: data.set.function
Author: Jeremy Avigad, Andrew Zipperer
Functions between subsets of finite types.
-/
import .basic
import algebra.function
open function eq.ops
namespace set
variables {X Y Z : Type}
abbreviation eq_on (f1 f2 : X → Y) (a : set X) : Prop :=
∀₀ x ∈ a, f1 x = f2 x
definition image (f : X → Y) (a : set X) : set Y := {y : Y | ∃x, x ∈ a ∧ f x = y}
notation f `'[`:max a `]` := image f a
theorem image_eq_image_of_eq_on {f1 f2 : X → Y} {a : set X} (H1 : eq_on f1 f2 a) :
f1 '[a] = f2 '[a] :=
setext (take y, iff.intro
(assume H2,
obtain x (H3 : x ∈ a ∧ f1 x = y), from H2,
have H4 : x ∈ a, from and.left H3,
have H5 : f2 x = y, from (H1 H4)⁻¹ ⬝ and.right H3,
exists.intro x (and.intro H4 H5))
(assume H2,
obtain x (H3 : x ∈ a ∧ f2 x = y), from H2,
have H4 : x ∈ a, from and.left H3,
have H5 : f1 x = y, from (H1 H4) ⬝ and.right H3,
exists.intro x (and.intro H4 H5)))
definition maps_to (f : X → Y) (a : set X) (b : set Y) : Prop := ∀⦃x⦄, x ∈ a → f x ∈ b
theorem maps_to_compose {g : Y → Z} {f : X → Y} {a : set X} {b : set Y} {c : set Z}
(H1 : maps_to g b c) (H2 : maps_to f a b) : maps_to (g ∘ f) a c :=
take x, assume H : x ∈ a, H1 (H2 H)
definition inj_on (f : X → Y) (a : set X) : Prop :=
∀⦃x1 x2 : X⦄, x1 ∈ a → x2 ∈ a → f x1 = f x2 → x1 = x2
theorem inj_on_of_eq_on {f1 f2 : X → Y} {a : set X} (inj_f1 : inj_on f1 a)
(eq_f1_f2 : eq_on f1 f2 a) : inj_on f2 a :=
take x1 x2 : X,
assume ax1 : x1 ∈ a,
assume ax2 : x2 ∈ a,
assume H : f2 x1 = f2 x2,
have H' : f1 x1 = f1 x2, from eq_f1_f2 ax1 ⬝ H ⬝ (eq_f1_f2 ax2)⁻¹,
show x1 = x2, from inj_f1 ax1 ax2 H'
definition surj_on (f : X → Y) (a : set X) (b : set Y) : Prop := b ⊆ f '[a]
theorem surj_on_of_eq_on {f1 f2 : X → Y} {a : set X} {b : set Y} (surj_f1 : surj_on f1 a b)
(eq_f1_f2 : eq_on f1 f2 a) : surj_on f2 a b :=
take y, assume H : y ∈ b,
obtain x (H1 : x ∈ a ∧ f1 x = y), from surj_f1 H,
have H2 : x ∈ a, from and.left H1,
have H3 : f2 x = y, from (eq_f1_f2 H2)⁻¹ ⬝ and.right H1,
exists.intro x (and.intro H2 H3)
end set