lean2/hott/hit/circle.hlean
Floris van Doorn 297d50378d feat(hott): add definitions using truncations and theorems about them
define embedding, (split) surjection, retraction, existential quantifier, 'or' connective
also add a whole bunch of theorems about these definitions

still has two sorry's which can be solved after #564 is closed
2015-04-29 10:04:07 -07:00

133 lines
4.6 KiB
Text

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: hit.circle
Authors: Floris van Doorn
Declaration of the circle
-/
import .sphere
open eq suspension bool sphere_index equiv equiv.ops
definition circle [reducible] := sphere 1
namespace circle
definition base1 : circle := !north
definition base2 : circle := !south
definition seg1 : base1 = base2 := merid !north
definition seg2 : base1 = base2 := merid !south
definition base : circle := base1
definition loop : base = base := seg1 ⬝ seg2⁻¹
definition rec2 {P : circle → Type} (Pb1 : P base1) (Pb2 : P base2)
(Ps1 : seg1 ▹ Pb1 = Pb2) (Ps2 : seg2 ▹ Pb1 = Pb2) (x : circle) : P x :=
begin
fapply (suspension.rec_on x),
{ exact Pb1},
{ exact Pb2},
{ esimp, intro b, fapply (suspension.rec_on b),
{ exact Ps1},
{ exact Ps2},
{ intro x, cases x}},
end
definition rec2_on [reducible] {P : circle → Type} (x : circle) (Pb1 : P base1) (Pb2 : P base2)
(Ps1 : seg1 ▹ Pb1 = Pb2) (Ps2 : seg2 ▹ Pb1 = Pb2) : P x :=
circle.rec2 Pb1 Pb2 Ps1 Ps2 x
theorem rec2_seg1 {P : circle → Type} (Pb1 : P base1) (Pb2 : P base2)
(Ps1 : seg1 ▹ Pb1 = Pb2) (Ps2 : seg2 ▹ Pb1 = Pb2)
: apd (rec2 Pb1 Pb2 Ps1 Ps2) seg1 = Ps1 :=
!rec_merid
theorem rec2_seg2 {P : circle → Type} (Pb1 : P base1) (Pb2 : P base2)
(Ps1 : seg1 ▹ Pb1 = Pb2) (Ps2 : seg2 ▹ Pb1 = Pb2)
: apd (rec2 Pb1 Pb2 Ps1 Ps2) seg2 = Ps2 :=
!rec_merid
definition elim2 {P : Type} (Pb1 Pb2 : P) (Ps1 : Pb1 = Pb2) (Ps2 : Pb1 = Pb2) (x : circle) : P :=
rec2 Pb1 Pb2 (!tr_constant ⬝ Ps1) (!tr_constant ⬝ Ps2) x
definition elim2_on [reducible] {P : Type} (x : circle) (Pb1 Pb2 : P)
(Ps1 : Pb1 = Pb2) (Ps2 : Pb1 = Pb2) : P :=
elim2 Pb1 Pb2 Ps1 Ps2 x
theorem elim2_seg1 {P : Type} (Pb1 Pb2 : P) (Ps1 : Pb1 = Pb2) (Ps2 : Pb1 = Pb2)
: ap (elim2 Pb1 Pb2 Ps1 Ps2) seg1 = Ps1 :=
begin
apply (@cancel_left _ _ _ _ (tr_constant seg1 (elim2 Pb1 Pb2 Ps1 Ps2 base1))),
rewrite [-apd_eq_tr_constant_con_ap,↑elim2,rec2_seg1],
end
theorem elim2_seg2 {P : Type} (Pb1 Pb2 : P) (Ps1 : Pb1 = Pb2) (Ps2 : Pb1 = Pb2)
: ap (elim2 Pb1 Pb2 Ps1 Ps2) seg2 = Ps2 :=
begin
apply (@cancel_left _ _ _ _ (tr_constant seg2 (elim2 Pb1 Pb2 Ps1 Ps2 base1))),
rewrite [-apd_eq_tr_constant_con_ap,↑elim2,rec2_seg2],
end
protected definition rec {P : circle → Type} (Pbase : P base) (Ploop : loop ▹ Pbase = Pbase)
(x : circle) : P x :=
begin
fapply (rec2_on x),
{ exact Pbase},
{ exact (transport P seg1 Pbase)},
{ apply idp},
{ apply tr_eq_of_eq_inv_tr, exact (Ploop⁻¹ ⬝ !con_tr)},
end
--rewrite -tr_con, exact Ploop⁻¹
protected definition rec_on [reducible] {P : circle → Type} (x : circle) (Pbase : P base)
(Ploop : loop ▹ Pbase = Pbase) : P x :=
rec Pbase Ploop x
theorem rec_loop_helper {A : Type} (P : A → Type)
{x y : A} {p : x = y} {u : P x} {v : P y} (q : u = p⁻¹ ▹ v) :
eq_inv_tr_of_tr_eq (tr_eq_of_eq_inv_tr q) = q :=
by cases p; exact idp
definition con_refl {A : Type} {x y : A} (p : x = y) : p ⬝ refl _ = p :=
eq.rec_on p idp
theorem rec_loop {P : circle → Type} (Pbase : P base) (Ploop : loop ▹ Pbase = Pbase) :
apd (rec Pbase Ploop) loop = Ploop :=
begin
rewrite [↑loop,apd_con,↑rec,↑rec2_on,↑base,rec2_seg1,apd_inv,rec2_seg2,↑ap], --con_idp should work here
apply concat, apply (ap (λx, x ⬝ _)), apply con_idp, esimp,
rewrite [rec_loop_helper,inv_con_inv_left],
apply con_inv_cancel_left
end
protected definition elim {P : Type} (Pbase : P) (Ploop : Pbase = Pbase)
(x : circle) : P :=
rec Pbase (tr_constant loop Pbase ⬝ Ploop) x
protected definition elim_on [reducible] {P : Type} (x : circle) (Pbase : P)
(Ploop : Pbase = Pbase) : P :=
elim Pbase Ploop x
theorem elim_loop {P : Type} (Pbase : P) (Ploop : Pbase = Pbase) :
ap (elim Pbase Ploop) loop = Ploop :=
begin
apply (@cancel_left _ _ _ _ (tr_constant loop (elim Pbase Ploop base))),
rewrite [-apd_eq_tr_constant_con_ap,↑elim,rec_loop],
end
protected definition elim_type (Pbase : Type) (Ploop : Pbase ≃ Pbase)
(x : circle) : Type :=
elim Pbase (ua Ploop) x
protected definition elim_type_on [reducible] (x : circle) (Pbase : Type)
(Ploop : Pbase ≃ Pbase) : Type :=
elim_type Pbase Ploop x
theorem elim_type_loop (Pbase : Type) (Ploop : Pbase ≃ Pbase) :
transport (elim_type Pbase Ploop) loop = Ploop :=
by rewrite [tr_eq_cast_ap_fn,↑elim_type,elim_loop];apply cast_ua_fn
end circle