lean2/library/theories/number_theory/prime_factorization.lean
2015-12-05 23:50:01 -08:00

311 lines
14 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad
Multiplicity and prime factors. We have:
mult p n := the greatest power of p dividing n if p > 1 and n > 0, and 0 otherwise.
prime_factors n := the finite set of prime factors of n, assuming n > 0
-/
import data.nat data.finset .primes algebra.group_set_bigops
open eq.ops finset well_founded decidable
namespace nat
-- TODO: this should be proved more generally in ring_bigops
theorem Prod_pos {A : Type} [deceqA : decidable_eq A]
{s : finset A} {f : A → } (fpos : ∀ n, n ∈ s → f n > 0) :
(∏ n ∈ s, f n) > 0 :=
begin
induction s with a s anins ih,
{rewrite Prod_empty; exact zero_lt_one},
rewrite [!Prod_insert_of_not_mem anins],
exact (mul_pos (fpos a (mem_insert a _)) (ih (forall_of_forall_insert fpos)))
end
/- multiplicity -/
theorem mult_rec_decreasing {p n : } (Hp : p > 1) (Hn : n > 0) : n / p < n :=
have H' : n < n * p,
by rewrite [-mul_one n at {1}]; apply mul_lt_mul_of_pos_left Hp Hn,
nat.div_lt_of_lt_mul H'
private definition mult.F (p : ) (n : ) (f: Π {m : }, m < n → ) : :=
if H : (p > 1 ∧ n > 0) ∧ p n then
succ (f (mult_rec_decreasing (and.left (and.left H)) (and.right (and.left H))))
else 0
definition mult (p n : ) : := fix (mult.F p) n
theorem mult_rec {p n : } (pgt1 : p > 1) (ngt0 : n > 0) (pdivn : p n) :
mult p n = succ (mult p (n / p)) :=
have (p > 1 ∧ n > 0) ∧ p n, from and.intro (and.intro pgt1 ngt0) pdivn,
eq.trans (well_founded.fix_eq (mult.F p) n) (dif_pos this)
private theorem mult_base {p n : } (H : ¬ ((p > 1 ∧ n > 0) ∧ p n)) :
mult p n = 0 :=
eq.trans (well_founded.fix_eq (mult.F p) n) (dif_neg H)
theorem mult_zero_right (p : ) : mult p 0 = 0 :=
mult_base (assume H, !lt.irrefl (and.right (and.left H)))
theorem mult_eq_zero_of_not_dvd {p n : } (H : ¬ p n) : mult p n = 0 :=
mult_base (assume H', H (and.right H'))
theorem mult_eq_zero_of_le_one {p : } (n : ) (H : p ≤ 1) : mult p n = 0 :=
mult_base (assume H', not_lt_of_ge H (and.left (and.left H')))
theorem mult_zero_left (n : ) : mult 0 n = 0 :=
mult_eq_zero_of_le_one n !dec_trivial
theorem mult_one_left (n : ) : mult 1 n = 0 :=
mult_eq_zero_of_le_one n !dec_trivial
theorem mult_pos_of_dvd {p n : } (pgt1 : p > 1) (npos : n > 0) (pdvdn : p n) : mult p n > 0 :=
by rewrite (mult_rec pgt1 npos pdvdn); apply succ_pos
theorem not_dvd_of_mult_eq_zero {p n : } (pgt1 : p > 1) (npos : n > 0) (H : mult p n = 0) :
¬ p n :=
suppose p n,
ne_of_gt (mult_pos_of_dvd pgt1 npos this) H
theorem dvd_of_mult_pos {p n : } (H : mult p n > 0) : p n :=
by_contradiction (suppose ¬ p n, ne_of_gt H (mult_eq_zero_of_not_dvd this))
/- properties of mult -/
theorem mult_eq_zero_of_prime_of_ne {p q : } (primep : prime p) (primeq : prime q)
(pneq : p ≠ q) :
mult p q = 0 :=
mult_eq_zero_of_not_dvd (not_dvd_of_prime_of_coprime primep (coprime_primes primep primeq pneq))
theorem pow_mult_dvd (p n : ) : p^(mult p n) n :=
begin
induction n using nat.strong_induction_on with [n, ih],
cases eq_zero_or_pos n with [nz, npos],
{rewrite nz, apply dvd_zero},
cases le_or_gt p 1 with [ple1, pgt1],
{rewrite [!mult_eq_zero_of_le_one ple1, pow_zero], apply one_dvd},
cases (or.swap (em (p n))) with [pndvdn, pdvdn],
{rewrite [mult_eq_zero_of_not_dvd pndvdn, pow_zero], apply one_dvd},
show p ^ (mult p n) n, from dvd.elim pdvdn
(take n',
suppose n = p * n',
have p > 0, from lt.trans zero_lt_one pgt1,
assert n / p = n', from !nat.div_eq_of_eq_mul_right this `n = p * n'`,
assert n' < n,
by rewrite -this; apply mult_rec_decreasing pgt1 npos,
begin
rewrite [mult_rec pgt1 npos pdvdn, `n / p = n'`, pow_succ], subst n,
apply mul_dvd_mul !dvd.refl,
apply ih _ this
end)
end
theorem mult_one_right (p : ) : mult p 1 = 0:=
assert H : p^(mult p 1) = 1, from eq_one_of_dvd_one !pow_mult_dvd,
or.elim (le_or_gt p 1)
(suppose p ≤ 1, by rewrite [!mult_eq_zero_of_le_one this])
(suppose p > 1,
by_contradiction
(suppose mult p 1 ≠ 0,
have mult p 1 > 0, from pos_of_ne_zero this,
assert p^(mult p 1) > 1, from pow_gt_one `p > 1` this,
show false, by rewrite H at this; apply !lt.irrefl this))
private theorem mult_pow_mul {p n : } (i : ) (pgt1 : p > 1) (npos : n > 0) :
mult p (p^i * n) = i + mult p n :=
begin
induction i with [i, ih],
{krewrite [pow_zero, one_mul, zero_add]},
have p > 0, from lt.trans zero_lt_one pgt1,
have psin_pos : p^(succ i) * n > 0, from mul_pos (!pow_pos_of_pos this) npos,
have p p^(succ i) * n, by rewrite [pow_succ, mul.assoc]; apply dvd_mul_right,
rewrite [mult_rec pgt1 psin_pos this, pow_succ', mul.right_comm, !nat.mul_div_cancel `p > 0`, ih],
rewrite [add.comm i, add.comm (succ i)]
end
theorem mult_pow_self {p : } (i : ) (pgt1 : p > 1) : mult p (p^i) = i :=
by rewrite [-(mul_one (p^i)), mult_pow_mul i pgt1 zero_lt_one, mult_one_right]
theorem mult_self {p : } (pgt1 : p > 1) : mult p p = 1 :=
by rewrite [-pow_one p at {2}]; apply mult_pow_self 1 pgt1
theorem le_mult {p i n : } (pgt1 : p > 1) (npos : n > 0) (pidvd : p^i n) : i ≤ mult p n :=
dvd.elim pidvd
(take m,
suppose n = p^i * m,
assert m > 0, from pos_of_mul_pos_left (this ▸ npos),
by subst n; rewrite [mult_pow_mul i pgt1 this]; apply le_add_right)
theorem not_dvd_div_pow_mult {p n : } (pgt1 : p > 1) (npos : n > 0) : ¬ p n / p^(mult p n) :=
assume pdvd : p n / p^(mult p n),
obtain m (H : n / p^(mult p n) = p * m), from exists_eq_mul_right_of_dvd pdvd,
assert n = p^(succ (mult p n)) * m, from
calc
n = p^mult p n * (n / p^mult p n) : by rewrite (nat.mul_div_cancel' !pow_mult_dvd)
... = p^(succ (mult p n)) * m : by rewrite [H, pow_succ', mul.assoc],
have p^(succ (mult p n)) n, by rewrite this at {2}; apply dvd_mul_right,
have succ (mult p n) ≤ mult p n, from le_mult pgt1 npos this,
show false, from !not_succ_le_self this
theorem mult_mul {p m n : } (primep : prime p) (mpos : m > 0) (npos : n > 0) :
mult p (m * n) = mult p m + mult p n :=
let m' := m / p^mult p m, n' := n / p^mult p n in
assert p > 1, from gt_one_of_prime primep,
assert meq : m = p^mult p m * m', by rewrite (nat.mul_div_cancel' !pow_mult_dvd),
assert neq : n = p^mult p n * n', by rewrite (nat.mul_div_cancel' !pow_mult_dvd),
have m'pos : m' > 0, from pos_of_mul_pos_left (meq ▸ mpos),
have n'pos : n' > 0, from pos_of_mul_pos_left (neq ▸ npos),
have npdvdm' : ¬ p m', from !not_dvd_div_pow_mult `p > 1` mpos,
have npdvdn' : ¬ p n', from !not_dvd_div_pow_mult `p > 1` npos,
assert npdvdm'n' : ¬ p m' * n', from not_dvd_mul_of_prime primep npdvdm' npdvdn',
assert m'n'pos : m' * n' > 0, from mul_pos m'pos n'pos,
assert multm'n' : mult p (m' * n') = 0, from mult_eq_zero_of_not_dvd npdvdm'n',
calc
mult p (m * n) = mult p (p^(mult p m + mult p n) * (m' * n')) :
by rewrite [pow_add, mul.right_comm, -mul.assoc, -meq, mul.assoc,
mul.comm (n / _), -neq]
... = mult p m + mult p n :
by rewrite [!mult_pow_mul `p > 1` m'n'pos, multm'n']
theorem mult_pow {p m : } (n : ) (mpos : m > 0) (primep : prime p) :
mult p (m^n) = n * mult p m :=
begin
induction n with n ih,
krewrite [pow_zero, mult_one_right, zero_mul],
rewrite [pow_succ, mult_mul primep mpos (!pow_pos_of_pos mpos), ih, succ_mul, add.comm]
end
theorem dvd_of_forall_prime_mult_le {m n : } (mpos : m > 0)
(H : ∀ {p}, prime p → mult p m ≤ mult p n) :
m n :=
begin
revert H, revert n,
induction m using nat.strong_induction_on with [m, ih],
cases (decidable.em (m = 1)) with [meq, mneq],
{intros, rewrite meq, apply one_dvd},
have mgt1 : m > 1, from lt_of_le_of_ne (succ_le_of_lt mpos) (ne.symm mneq),
have mge2 : m ≥ 2, from succ_le_of_lt mgt1,
have hpd : ∃ p, prime p ∧ p m, from exists_prime_and_dvd mge2,
cases hpd with [p, H1],
cases H1 with [primep, pdvdm],
intro n,
cases (eq_zero_or_pos n) with [nz, npos],
{intros; rewrite nz; apply dvd_zero},
assume H : ∀ {p : }, prime p → mult p m ≤ mult p n,
obtain m' (meq : m = p * m'), from exists_eq_mul_right_of_dvd pdvdm,
assert pgt1 : p > 1, from gt_one_of_prime primep,
assert m'pos : m' > 0, from pos_of_ne_zero
(assume m'z, by revert mpos; rewrite [meq, m'z, mul_zero]; apply not_lt_zero),
have m'ltm : m' < m,
by rewrite [meq, -one_mul m' at {1}]; apply mul_lt_mul_of_lt_of_le m'pos pgt1 !le.refl,
have multpm : mult p m ≥ 1, from le_mult pgt1 mpos (by rewrite pow_one; apply pdvdm),
have multpn : mult p n ≥ 1, from le.trans multpm (H primep),
obtain n' (neq : n = p * n'),
from exists_eq_mul_right_of_dvd (dvd_of_mult_pos (lt_of_succ_le multpn)),
assert n'pos : n' > 0, from pos_of_ne_zero
(assume n'z, by revert npos; rewrite [neq, n'z, mul_zero]; apply not_lt_zero),
have ∀q, prime q → mult q m' ≤ mult q n', from
(take q,
assume primeq : prime q,
have multqm : mult q m = mult q p + mult q m',
by rewrite [meq, mult_mul primeq (pos_of_prime primep) m'pos],
have multqn : mult q n = mult q p + mult q n',
by rewrite [neq, mult_mul primeq (pos_of_prime primep) n'pos],
show mult q m' ≤ mult q n', from le_of_add_le_add_left (multqm ▸ multqn ▸ H primeq)),
assert m'dvdn' : m' n', from ih m' m'ltm m'pos n' this,
show m n, by rewrite [meq, neq]; apply mul_dvd_mul !dvd.refl m'dvdn'
end
theorem eq_of_forall_prime_mult_eq {m n : } (mpos : m > 0) (npos : n > 0)
(H : ∀ p, prime p → mult p m = mult p n) : m = n :=
dvd.antisymm
(dvd_of_forall_prime_mult_le mpos (take p, assume primep, H _ primep ▸ !le.refl))
(dvd_of_forall_prime_mult_le npos (take p, assume primep, H _ primep ▸ !le.refl))
/- prime factors -/
definition prime_factors (n : ) : finset := { p ∈ upto (succ n) | prime p ∧ p n }
theorem prime_of_mem_prime_factors {p n : } (H : p ∈ prime_factors n) : prime p :=
and.left (of_mem_sep H)
theorem dvd_of_mem_prime_factors {p n : } (H : p ∈ prime_factors n) : p n :=
and.right (of_mem_sep H)
theorem mem_prime_factors {p n : } (npos : n > 0) (primep : prime p) (pdvdn : p n) :
p ∈ prime_factors n :=
have plen : p ≤ n, from le_of_dvd npos pdvdn,
mem_sep_of_mem (mem_upto_of_lt (lt_succ_of_le plen)) (and.intro primep pdvdn)
/- prime factorization -/
theorem mult_pow_eq_zero_of_prime_of_ne {p q : } (primep : prime p) (primeq : prime q)
(pneq : p ≠ q) (i : ) : mult p (q^i) = 0 :=
begin
induction i with i ih,
{rewrite [pow_zero, mult_one_right]},
have qpos : q > 0, from pos_of_prime primeq,
have qipos : q^i > 0, from !pow_pos_of_pos qpos,
rewrite [pow_succ', mult_mul primep qipos qpos, ih, mult_eq_zero_of_prime_of_ne primep
primeq pneq]
end
theorem mult_prod_pow_of_not_mem {p : } (primep : prime p) {s : finset }
(sprimes : ∀ p, p ∈ s → prime p) (f : ) (pns : p ∉ s) :
mult p (∏ q ∈ s, q^(f q)) = 0 :=
begin
induction s with a s anins ih,
{rewrite [Prod_empty, mult_one_right]},
have pnea : p ≠ a, from assume peqa, by rewrite peqa at pns; exact pns !mem_insert,
have primea : prime a, from sprimes a !mem_insert,
have afapos : a ^ f a > 0, from !pow_pos_of_pos (pos_of_prime primea),
have prodpos : (∏ q ∈ s, q ^ f q) > 0,
from Prod_pos (take q, assume qs,
!pow_pos_of_pos (pos_of_prime (forall_of_forall_insert sprimes q qs))),
rewrite [!Prod_insert_of_not_mem anins, mult_mul primep afapos prodpos],
rewrite (mult_pow_eq_zero_of_prime_of_ne primep primea pnea),
rewrite (ih (forall_of_forall_insert sprimes) (λ H, pns (!mem_insert_of_mem H)))
end
theorem mult_prod_pow_of_mem {p : } (primep : prime p) {s : finset }
(sprimes : ∀ p, p ∈ s → prime p) (f : ) (ps : p ∈ s) :
mult p (∏ q ∈ s, q^(f q)) = f p :=
begin
induction s with a s anins ih,
{exact absurd ps !not_mem_empty},
have primea : prime a, from sprimes a !mem_insert,
have afapos : a ^ f a > 0, from !pow_pos_of_pos (pos_of_prime primea),
have prodpos : (∏ q ∈ s, q ^ f q) > 0,
from Prod_pos (take q, assume qs,
!pow_pos_of_pos (pos_of_prime (forall_of_forall_insert sprimes q qs))),
rewrite [!Prod_insert_of_not_mem anins, mult_mul primep afapos prodpos],
cases eq_or_mem_of_mem_insert ps with peqa pins,
{rewrite [peqa, !mult_pow_self (gt_one_of_prime primea)],
rewrite [mult_prod_pow_of_not_mem primea (forall_of_forall_insert sprimes) _ anins]},
have pnea : p ≠ a, from by intro peqa; rewrite peqa at pins; exact anins pins,
rewrite [mult_pow_eq_zero_of_prime_of_ne primep primea pnea, zero_add],
exact (ih (forall_of_forall_insert sprimes) pins)
end
theorem eq_prime_factorization {n : } (npos : n > 0) :
n = (∏ p ∈ prime_factors n, p^(mult p n)) :=
let nprod := ∏ p ∈ prime_factors n, p^(mult p n) in
assert primefactors : ∀ p, p ∈ prime_factors n → prime p,
from take p, @prime_of_mem_prime_factors p n,
have prodpos : (∏ q ∈ prime_factors n, q^(mult q n)) > 0,
from Prod_pos (take q, assume qpf,
!pow_pos_of_pos (pos_of_prime (prime_of_mem_prime_factors qpf))),
eq_of_forall_prime_mult_eq npos prodpos
(take p,
assume primep,
decidable.by_cases
(assume pprimefactors : p ∈ prime_factors n,
eq.symm (mult_prod_pow_of_mem primep primefactors (λ p, mult p n) pprimefactors))
(assume pnprimefactors : p ∉ prime_factors n,
have ¬ p n, from assume H, pnprimefactors (mem_prime_factors npos primep H),
assert mult p n = 0, from mult_eq_zero_of_not_dvd this,
by rewrite [this, mult_prod_pow_of_not_mem primep primefactors _ pnprimefactors]))
end nat