lean2/library/theories/number_theory/primes.lean
2015-12-05 23:50:01 -08:00

235 lines
10 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura, Jeremy Avigad
Prime numbers.
-/
import data.nat logic.identities
open bool
namespace nat
open decidable
definition prime [reducible] (p : nat) := p ≥ 2 ∧ ∀ m, m p → m = 1 m = p
definition prime_ext (p : nat) := p ≥ 2 ∧ ∀ m, m ≤ p → m p → m = 1 m = p
local attribute prime_ext [reducible]
lemma prime_ext_iff_prime (p : nat) : prime_ext p ↔ prime p :=
iff.intro
begin
intro h, cases h with h₁ h₂, constructor, assumption,
intro m d, exact h₂ m (le_of_dvd (lt_of_succ_le (le_of_succ_le h₁)) d) d
end
begin
intro h, cases h with h₁ h₂, constructor, assumption,
intro m l d, exact h₂ m d
end
definition decidable_prime [instance] (p : nat) : decidable (prime p) :=
decidable_of_decidable_of_iff _ (prime_ext_iff_prime p)
lemma ge_two_of_prime {p : nat} : prime p → p ≥ 2 :=
suppose prime p, obtain h₁ h₂, from this,
h₁
theorem gt_one_of_prime {p : } (primep : prime p) : p > 1 :=
lt_of_succ_le (ge_two_of_prime primep)
theorem pos_of_prime {p : } (primep : prime p) : p > 0 :=
lt.trans zero_lt_one (gt_one_of_prime primep)
lemma not_prime_zero : ¬ prime 0 :=
λ h, absurd (ge_two_of_prime h) dec_trivial
lemma not_prime_one : ¬ prime 1 :=
λ h, absurd (ge_two_of_prime h) dec_trivial
lemma prime_two : prime 2 :=
dec_trivial
lemma prime_three : prime 3 :=
dec_trivial
lemma pred_prime_pos {p : nat} : prime p → pred p > 0 :=
suppose prime p,
have p ≥ 2, from ge_two_of_prime this,
show pred p > 0, from lt_of_succ_le (pred_le_pred this)
lemma succ_pred_prime {p : nat} : prime p → succ (pred p) = p :=
assume h, succ_pred_of_pos (pos_of_prime h)
lemma eq_one_or_eq_self_of_prime_of_dvd {p m : nat} : prime p → m p → m = 1 m = p :=
assume h d, obtain h₁ h₂, from h, h₂ m d
lemma gt_one_of_pos_of_prime_dvd {i p : nat} : prime p → 0 < i → i % p = 0 → 1 < i :=
assume ipp pos h,
have p ≥ 2, from ge_two_of_prime ipp,
have p i, from dvd_of_mod_eq_zero h,
have p ≤ i, from le_of_dvd pos this,
lt_of_succ_le (le.trans `2 ≤ p` this)
definition sub_dvd_of_not_prime {n : nat} : n ≥ 2 → ¬ prime n → {m | m n ∧ m ≠ 1 ∧ m ≠ n} :=
assume h₁ h₂,
have ¬ prime_ext n, from iff.mpr (not_iff_not_of_iff !prime_ext_iff_prime) h₂,
have ¬ n ≥ 2 ¬ (∀ m, m ≤ n → m n → m = 1 m = n), from iff.mp !not_and_iff_not_or_not this,
have ¬ (∀ m, m ≤ n → m n → m = 1 m = n), from or_resolve_right this (not_not_intro h₁),
have ¬ (∀ m, m < succ n → m n → m = 1 m = n), from
assume h, absurd (λ m hl hd, h m (lt_succ_of_le hl) hd) this,
have {m | m < succ n ∧ ¬(m n → m = 1 m = n)}, from bsub_not_of_not_ball this,
obtain m hlt (h₃ : ¬(m n → m = 1 m = n)), from this,
obtain `m n` (h₅ : ¬ (m = 1 m = n)), from iff.mp !not_implies_iff_and_not h₃,
have ¬ m = 1 ∧ ¬ m = n, from iff.mp !not_or_iff_not_and_not h₅,
subtype.tag m (and.intro `m n` this)
theorem exists_dvd_of_not_prime {n : nat} : n ≥ 2 → ¬ prime n → ∃ m, m n ∧ m ≠ 1 ∧ m ≠ n :=
assume h₁ h₂, ex_of_sub (sub_dvd_of_not_prime h₁ h₂)
definition sub_dvd_of_not_prime2 {n : nat} : n ≥ 2 → ¬ prime n → {m | m n ∧ m ≥ 2 ∧ m < n} :=
assume h₁ h₂,
have n ≠ 0, from assume h, begin subst n, exact absurd h₁ dec_trivial end,
obtain m m_dvd_n m_ne_1 m_ne_n, from sub_dvd_of_not_prime h₁ h₂,
assert m_ne_0 : m ≠ 0, from assume h, begin subst m, exact absurd (eq_zero_of_zero_dvd m_dvd_n) `n ≠ 0` end,
begin
existsi m, split, assumption,
split,
{cases m with m, exact absurd rfl m_ne_0,
cases m with m, exact absurd rfl m_ne_1, exact succ_le_succ (succ_le_succ (zero_le _))},
{have m_le_n : m ≤ n, from le_of_dvd (pos_of_ne_zero `n ≠ 0`) m_dvd_n,
exact lt_of_le_of_ne m_le_n m_ne_n}
end
theorem exists_dvd_of_not_prime2 {n : nat} : n ≥ 2 → ¬ prime n → ∃ m, m n ∧ m ≥ 2 ∧ m < n :=
assume h₁ h₂, ex_of_sub (sub_dvd_of_not_prime2 h₁ h₂)
definition sub_prime_and_dvd {n : nat} : n ≥ 2 → {p | prime p ∧ p n} :=
nat.strong_rec_on n
(take n,
assume ih : ∀ m, m < n → m ≥ 2 → {p | prime p ∧ p m},
suppose n ≥ 2,
by_cases
(suppose prime n, subtype.tag n (and.intro this (dvd.refl n)))
(suppose ¬ prime n,
obtain m m_dvd_n m_ge_2 m_lt_n, from sub_dvd_of_not_prime2 `n ≥ 2` this,
obtain p (hp : prime p) (p_dvd_m : p m), from ih m m_lt_n m_ge_2,
have p n, from dvd.trans p_dvd_m m_dvd_n,
subtype.tag p (and.intro hp this)))
lemma exists_prime_and_dvd {n : nat} : n ≥ 2 → ∃ p, prime p ∧ p n :=
assume h, ex_of_sub (sub_prime_and_dvd h)
open eq.ops
definition infinite_primes (n : nat) : {p | p ≥ n ∧ prime p} :=
let m := fact (n + 1) in
have m ≥ 1, from le_of_lt_succ (succ_lt_succ (fact_pos _)),
have m + 1 ≥ 2, from succ_le_succ this,
obtain p `prime p` `p m + 1`, from sub_prime_and_dvd this,
have p ≥ 2, from ge_two_of_prime `prime p`,
have p > 0, from lt_of_succ_lt (lt_of_succ_le `p ≥ 2`),
have p ≥ n, from by_contradiction
(suppose ¬ p ≥ n,
have p < n, from lt_of_not_ge this,
have p ≤ n + 1, from le_of_lt (lt.step this),
have p m, from dvd_fact `p > 0` this,
have p 1, from dvd_of_dvd_add_right (!add.comm ▸ `p m + 1`) this,
have p ≤ 1, from le_of_dvd zero_lt_one this,
show false, from absurd (le.trans `2 ≤ p` `p ≤ 1`) dec_trivial),
subtype.tag p (and.intro this `prime p`)
lemma exists_infinite_primes (n : nat) : ∃ p, p ≥ n ∧ prime p :=
ex_of_sub (infinite_primes n)
lemma odd_of_prime {p : nat} : prime p → p > 2 → odd p :=
λ pp p_gt_2, by_contradiction (λ hn,
have even p, from even_of_not_odd hn,
obtain k `p = 2*k`, from exists_of_even this,
assert 2 p, by rewrite [`p = 2*k`]; apply dvd_mul_right,
or.elim (eq_one_or_eq_self_of_prime_of_dvd pp this)
(suppose 2 = 1, absurd this dec_trivial)
(suppose 2 = p, by subst this; exact absurd p_gt_2 !lt.irrefl))
theorem dvd_of_prime_of_not_coprime {p n : } (primep : prime p) (nc : ¬ coprime p n) : p n :=
have H : gcd p n = 1 gcd p n = p, from eq_one_or_eq_self_of_prime_of_dvd primep !gcd_dvd_left,
or_resolve_right H nc ▸ !gcd_dvd_right
theorem coprime_of_prime_of_not_dvd {p n : } (primep : prime p) (npdvdn : ¬ p n) :
coprime p n :=
by_contradiction (suppose ¬ coprime p n, npdvdn (dvd_of_prime_of_not_coprime primep this))
theorem not_dvd_of_prime_of_coprime {p n : } (primep : prime p) (cop : coprime p n) : ¬ p n :=
suppose p n,
have p gcd p n, from dvd_gcd !dvd.refl this,
have p ≤ gcd p n, from le_of_dvd (!gcd_pos_of_pos_left (pos_of_prime primep)) this,
have 2 ≤ 1, from le.trans (ge_two_of_prime primep) (cop ▸ this),
show false, from !not_succ_le_self this
theorem not_coprime_of_prime_dvd {p n : } (primep : prime p) (pdvdn : p n) : ¬ coprime p n :=
assume cop, not_dvd_of_prime_of_coprime primep cop pdvdn
theorem dvd_of_prime_of_dvd_mul_left {p m n : } (primep : prime p)
(Hmn : p m * n) (Hm : ¬ p m) :
p n :=
have coprime p m, from coprime_of_prime_of_not_dvd primep Hm,
show p n, from dvd_of_coprime_of_dvd_mul_left this Hmn
theorem dvd_of_prime_of_dvd_mul_right {p m n : } (primep : prime p)
(Hmn : p m * n) (Hn : ¬ p n) :
p m :=
dvd_of_prime_of_dvd_mul_left primep (!mul.comm ▸ Hmn) Hn
theorem not_dvd_mul_of_prime {p m n : } (primep : prime p) (Hm : ¬ p m) (Hn : ¬ p n) :
¬ p m * n :=
assume Hmn, Hm (dvd_of_prime_of_dvd_mul_right primep Hmn Hn)
lemma dvd_or_dvd_of_prime_of_dvd_mul {p m n : nat} : prime p → p m * n → p m p n :=
λ h₁ h₂, by_cases
(suppose p m, or.inl this)
(suppose ¬ p m, or.inr (dvd_of_prime_of_dvd_mul_left h₁ h₂ this))
lemma dvd_of_prime_of_dvd_pow {p m : nat} : ∀ {n}, prime p → p m^n → p m
| 0 hp hd :=
assert p = 1, from eq_one_of_dvd_one hd,
have (1:nat) ≥ 2, begin rewrite -this at {1}, apply ge_two_of_prime hp end,
absurd this dec_trivial
| (succ n) hp hd :=
have p (m^n)*m, by rewrite [pow_succ' at hd]; exact hd,
or.elim (dvd_or_dvd_of_prime_of_dvd_mul hp this)
(suppose p m^n, dvd_of_prime_of_dvd_pow hp this)
(suppose p m, this)
lemma coprime_pow_of_prime_of_not_dvd {p m a : nat} : prime p → ¬ p a → coprime a (p^m) :=
λ h₁ h₂, coprime_pow_right m (coprime_swap (coprime_of_prime_of_not_dvd h₁ h₂))
lemma coprime_primes {p q : nat} : prime p → prime q → p ≠ q → coprime p q :=
λ hp hq hn,
assert gcd p q p, from !gcd_dvd_left,
or.elim (eq_one_or_eq_self_of_prime_of_dvd hp this)
(suppose gcd p q = 1, this)
(assume h : gcd p q = p,
assert gcd p q q, from !gcd_dvd_right,
have p q, by rewrite -h; exact this,
or.elim (eq_one_or_eq_self_of_prime_of_dvd hq this)
(suppose p = 1, by subst p; exact absurd hp not_prime_one)
(suppose p = q, by contradiction))
lemma coprime_pow_primes {p q : nat} (n m : nat) : prime p → prime q → p ≠ q → coprime (p^n) (q^m) :=
λ hp hq hn, coprime_pow_right m (coprime_pow_left n (coprime_primes hp hq hn))
lemma coprime_or_dvd_of_prime {p} (Pp : prime p) (i : nat) : coprime p i p i :=
by_cases
(suppose p i, or.inr this)
(suppose ¬ p i, or.inl (coprime_of_prime_of_not_dvd Pp this))
lemma eq_one_or_dvd_of_dvd_prime_pow {p : nat} : ∀ {m i : nat}, prime p → i (p^m) → i = 1 p i
| 0 := take i, assume Pp, begin rewrite [pow_zero], intro Pdvd, apply or.inl (eq_one_of_dvd_one Pdvd) end
| (succ m) := take i, assume Pp, or.elim (coprime_or_dvd_of_prime Pp i)
(λ Pcp, begin
rewrite [pow_succ'], intro Pdvd,
apply eq_one_or_dvd_of_dvd_prime_pow Pp,
apply dvd_of_coprime_of_dvd_mul_right,
apply coprime_swap Pcp, exact Pdvd
end)
(λ Pdvd, assume P, or.inr Pdvd)
end nat