635 lines
24 KiB
Text
635 lines
24 KiB
Text
/-
|
||
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Jeremy Avigad, Robert Y. Lewis
|
||
|
||
Instantiates the reals as a Banach space.
|
||
-/
|
||
import .metric_space data.real.complete data.set .normed_space
|
||
open real classical analysis nat
|
||
noncomputable theory
|
||
|
||
/- sup and inf -/
|
||
|
||
-- Expresses completeness, sup, and inf in a manner that is less constructive, but more convenient,
|
||
-- than the way it is done in data.real.complete.
|
||
|
||
-- Issue: real.sup and real.inf conflict with sup and inf in lattice.
|
||
-- Perhaps put algebra sup and inf into a namespace?
|
||
|
||
namespace real
|
||
open set
|
||
|
||
private definition exists_is_sup {X : set ℝ} (H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → x ≤ b)) :
|
||
∃ y, is_sup X y :=
|
||
let x := some (and.left H), b := some (and.right H) in
|
||
exists_is_sup_of_inh_of_bdd X x (some_spec (and.left H)) b (some_spec (and.right H))
|
||
|
||
private definition sup_aux {X : set ℝ} (H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → x ≤ b)) :=
|
||
some (exists_is_sup H)
|
||
|
||
private definition sup_aux_spec {X : set ℝ} (H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → x ≤ b)) :
|
||
is_sup X (sup_aux H) :=
|
||
some_spec (exists_is_sup H)
|
||
|
||
definition sup (X : set ℝ) : ℝ :=
|
||
if H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → x ≤ b) then sup_aux H else 0
|
||
|
||
proposition le_sup {x : ℝ} {X : set ℝ} (Hx : x ∈ X) {b : ℝ} (Hb : ∀ x, x ∈ X → x ≤ b) :
|
||
x ≤ sup X :=
|
||
have H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → x ≤ b),
|
||
from and.intro (exists.intro x Hx) (exists.intro b Hb),
|
||
by+ rewrite [↑sup, dif_pos H]; exact and.left (sup_aux_spec H) x Hx
|
||
|
||
proposition sup_le {X : set ℝ} (HX : ∃ x, x ∈ X) {b : ℝ} (Hb : ∀ x, x ∈ X → x ≤ b) :
|
||
sup X ≤ b :=
|
||
have H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → x ≤ b),
|
||
from and.intro HX (exists.intro b Hb),
|
||
by+ rewrite [↑sup, dif_pos H]; exact and.right (sup_aux_spec H) b Hb
|
||
|
||
proposition exists_mem_and_lt_of_lt_sup {X : set ℝ} (HX : ∃ x, x ∈ X) {b : ℝ} (Hb : b < sup X) :
|
||
∃ x, x ∈ X ∧ b < x :=
|
||
have ¬ ∀ x, x ∈ X → x ≤ b, from assume H, not_le_of_gt Hb (sup_le HX H),
|
||
obtain x (Hx : ¬ (x ∈ X → x ≤ b)), from exists_not_of_not_forall this,
|
||
exists.intro x
|
||
(have x ∈ X ∧ ¬ x ≤ b, by rewrite [-not_implies_iff_and_not]; apply Hx,
|
||
and.intro (and.left this) (lt_of_not_ge (and.right this)))
|
||
|
||
private definition exists_is_inf {X : set ℝ} (H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → b ≤ x)) :
|
||
∃ y, is_inf X y :=
|
||
let x := some (and.left H), b := some (and.right H) in
|
||
exists_is_inf_of_inh_of_bdd X x (some_spec (and.left H)) b (some_spec (and.right H))
|
||
|
||
private definition inf_aux {X : set ℝ} (H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → b ≤ x)) :=
|
||
some (exists_is_inf H)
|
||
|
||
private definition inf_aux_spec {X : set ℝ} (H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → b ≤ x)) :
|
||
is_inf X (inf_aux H) :=
|
||
some_spec (exists_is_inf H)
|
||
|
||
definition inf (X : set ℝ) : ℝ :=
|
||
if H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → b ≤ x) then inf_aux H else 0
|
||
|
||
proposition inf_le {x : ℝ} {X : set ℝ} (Hx : x ∈ X) {b : ℝ} (Hb : ∀ x, x ∈ X → b ≤ x) :
|
||
inf X ≤ x :=
|
||
have H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → b ≤ x),
|
||
from and.intro (exists.intro x Hx) (exists.intro b Hb),
|
||
by+ rewrite [↑inf, dif_pos H]; exact and.left (inf_aux_spec H) x Hx
|
||
|
||
proposition le_inf {X : set ℝ} (HX : ∃ x, x ∈ X) {b : ℝ} (Hb : ∀ x, x ∈ X → b ≤ x) :
|
||
b ≤ inf X :=
|
||
have H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → b ≤ x),
|
||
from and.intro HX (exists.intro b Hb),
|
||
by+ rewrite [↑inf, dif_pos H]; exact and.right (inf_aux_spec H) b Hb
|
||
|
||
proposition exists_mem_and_lt_of_inf_lt {X : set ℝ} (HX : ∃ x, x ∈ X) {b : ℝ} (Hb : inf X < b) :
|
||
∃ x, x ∈ X ∧ x < b :=
|
||
have ¬ ∀ x, x ∈ X → b ≤ x, from assume H, not_le_of_gt Hb (le_inf HX H),
|
||
obtain x (Hx : ¬ (x ∈ X → b ≤ x)), from exists_not_of_not_forall this,
|
||
exists.intro x
|
||
(have x ∈ X ∧ ¬ b ≤ x, by rewrite [-not_implies_iff_and_not]; apply Hx,
|
||
and.intro (and.left this) (lt_of_not_ge (and.right this)))
|
||
|
||
section
|
||
local attribute mem [quasireducible]
|
||
-- TODO: is there a better place to put this?
|
||
proposition image_neg_eq (X : set ℝ) : (λ x, -x) ' X = {x | -x ∈ X} :=
|
||
set.ext (take x, iff.intro
|
||
(assume H, obtain y [(Hy₁ : y ∈ X) (Hy₂ : -y = x)], from H,
|
||
show -x ∈ X, by rewrite [-Hy₂, neg_neg]; exact Hy₁)
|
||
(assume H : -x ∈ X, exists.intro (-x) (and.intro H !neg_neg)))
|
||
|
||
proposition sup_neg {X : set ℝ} (nonempty_X : ∃ x, x ∈ X) {b : ℝ} (Hb : ∀ x, x ∈ X → b ≤ x) :
|
||
sup {x | -x ∈ X} = - inf X :=
|
||
let negX := {x | -x ∈ X} in
|
||
have nonempty_negX : ∃ x, x ∈ negX, from
|
||
obtain x Hx, from nonempty_X,
|
||
have -(-x) ∈ X,
|
||
by rewrite neg_neg; apply Hx,
|
||
exists.intro (-x) this,
|
||
have H₁ : ∀ x, x ∈ negX → x ≤ - inf X, from
|
||
take x,
|
||
assume H,
|
||
have inf X ≤ -x,
|
||
from inf_le H Hb,
|
||
show x ≤ - inf X,
|
||
from le_neg_of_le_neg this,
|
||
have H₂ : ∀ x, x ∈ X → -sup negX ≤ x, from
|
||
take x,
|
||
assume H,
|
||
have -(-x) ∈ X, by rewrite neg_neg; apply H,
|
||
have -x ≤ sup negX, from le_sup this H₁,
|
||
show -sup negX ≤ x,
|
||
from !neg_le_of_neg_le this,
|
||
eq_of_le_of_ge
|
||
(show sup negX ≤ - inf X,
|
||
from sup_le nonempty_negX H₁)
|
||
(show -inf X ≤ sup negX,
|
||
from !neg_le_of_neg_le (le_inf nonempty_X H₂))
|
||
|
||
proposition inf_neg {X : set ℝ} (nonempty_X : ∃ x, x ∈ X) {b : ℝ} (Hb : ∀ x, x ∈ X → x ≤ b) :
|
||
inf {x | -x ∈ X} = - sup X :=
|
||
let negX := {x | -x ∈ X} in
|
||
have nonempty_negX : ∃ x, x ∈ negX, from
|
||
obtain x Hx, from nonempty_X,
|
||
have -(-x) ∈ X,
|
||
by rewrite neg_neg; apply Hx,
|
||
exists.intro (-x) this,
|
||
have Hb' : ∀ x, x ∈ negX → -b ≤ x,
|
||
from take x, assume H, !neg_le_of_neg_le (Hb _ H),
|
||
have HX : X = {x | -x ∈ negX},
|
||
from set.ext (take x, by rewrite [↑set_of, ↑mem, +neg_neg]),
|
||
show inf {x | -x ∈ X} = - sup X,
|
||
using HX Hb' nonempty_negX, by rewrite [HX at {2}, sup_neg nonempty_negX Hb', neg_neg]
|
||
end
|
||
end real
|
||
|
||
/- the reals form a complete metric space -/
|
||
|
||
namespace analysis
|
||
|
||
theorem dist_eq_abs (x y : real) : dist x y = abs (x - y) := rfl
|
||
|
||
proposition converges_to_seq_real_intro {X : ℕ → ℝ} {y : ℝ}
|
||
(H : ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : ℕ, ∀ {n}, n ≥ N → abs (X n - y) < ε) :
|
||
(X ⟶ y in ℕ) := H
|
||
|
||
proposition converges_to_seq_real_elim {X : ℕ → ℝ} {y : ℝ} (H : X ⟶ y in ℕ) :
|
||
∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : ℕ, ∀ {n}, n ≥ N → abs (X n - y) < ε := H
|
||
|
||
proposition converges_to_seq_real_intro' {X : ℕ → ℝ} {y : ℝ}
|
||
(H : ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : ℕ, ∀ {n}, n ≥ N → abs (X n - y) ≤ ε) :
|
||
converges_to_seq X y :=
|
||
converges_to_seq.intro H
|
||
|
||
open pnat subtype
|
||
local postfix ⁻¹ := pnat.inv
|
||
|
||
private definition pnat.succ (n : ℕ) : ℕ+ := tag (succ n) !succ_pos
|
||
|
||
private definition r_seq_of (X : ℕ → ℝ) : r_seq := λ n, X (elt_of n)
|
||
|
||
private lemma rate_of_cauchy_aux {X : ℕ → ℝ} (H : cauchy X) :
|
||
∀ k : ℕ+, ∃ N : ℕ+, ∀ m n : ℕ+,
|
||
m ≥ N → n ≥ N → abs (X (elt_of m) - X (elt_of n)) ≤ of_rat k⁻¹ :=
|
||
take k : ℕ+,
|
||
have H1 : (k⁻¹ >[rat] (rat.of_num 0)), from !pnat.inv_pos,
|
||
have H2 : (of_rat k⁻¹ > of_rat (rat.of_num 0)), from !of_rat_lt_of_rat_of_lt H1,
|
||
obtain (N : ℕ) (H : ∀ m n, m ≥ N → n ≥ N → abs (X m - X n) < of_rat k⁻¹), from H _ H2,
|
||
exists.intro (pnat.succ N)
|
||
(take m n : ℕ+,
|
||
assume Hm : m ≥ (pnat.succ N),
|
||
assume Hn : n ≥ (pnat.succ N),
|
||
have Hm' : elt_of m ≥ N, begin apply le.trans, apply le_succ, apply Hm end,
|
||
have Hn' : elt_of n ≥ N, begin apply le.trans, apply le_succ, apply Hn end,
|
||
show abs (X (elt_of m) - X (elt_of n)) ≤ of_rat k⁻¹, from le_of_lt (H _ _ Hm' Hn'))
|
||
|
||
private definition rate_of_cauchy {X : ℕ → ℝ} (H : cauchy X) (k : ℕ+) : ℕ+ :=
|
||
some (rate_of_cauchy_aux H k)
|
||
|
||
private lemma cauchy_with_rate_of_cauchy {X : ℕ → ℝ} (H : cauchy X) :
|
||
cauchy_with_rate (r_seq_of X) (rate_of_cauchy H) :=
|
||
take k : ℕ+,
|
||
some_spec (rate_of_cauchy_aux H k)
|
||
|
||
private lemma converges_to_with_rate_of_cauchy {X : ℕ → ℝ} (H : cauchy X) :
|
||
∃ l Nb, converges_to_with_rate (r_seq_of X) l Nb :=
|
||
begin
|
||
apply exists.intro,
|
||
apply exists.intro,
|
||
apply converges_to_with_rate_of_cauchy_with_rate,
|
||
exact cauchy_with_rate_of_cauchy H
|
||
end
|
||
|
||
theorem converges_seq_of_cauchy {X : ℕ → ℝ} (H : cauchy X) : converges_seq X :=
|
||
obtain l Nb (conv : converges_to_with_rate (r_seq_of X) l Nb),
|
||
from converges_to_with_rate_of_cauchy H,
|
||
exists.intro l
|
||
(take ε : ℝ,
|
||
suppose ε > 0,
|
||
obtain (k' : ℕ) (Hn : 1 / succ k' < ε), from archimedean_small `ε > 0`,
|
||
let k : ℕ+ := tag (succ k') !succ_pos,
|
||
N : ℕ+ := Nb k in
|
||
have Hk : real.of_rat k⁻¹ < ε,
|
||
by rewrite [↑pnat.inv, of_rat_divide]; exact Hn,
|
||
exists.intro (elt_of N)
|
||
(take n : ℕ,
|
||
assume Hn : n ≥ elt_of N,
|
||
let n' : ℕ+ := tag n (nat.lt_of_lt_of_le (has_property N) Hn) in
|
||
have abs (X n - l) ≤ real.of_rat k⁻¹, by apply conv k n' Hn,
|
||
show abs (X n - l) < ε, from lt_of_le_of_lt this Hk))
|
||
|
||
end analysis
|
||
|
||
definition complete_metric_space_real [reducible] [trans_instance] :
|
||
complete_metric_space ℝ :=
|
||
⦃complete_metric_space, metric_space_real,
|
||
complete := @analysis.converges_seq_of_cauchy
|
||
⦄
|
||
|
||
/- the real numbers can be viewed as a banach space -/
|
||
|
||
definition real_vector_space_real : real_vector_space ℝ :=
|
||
⦃ real_vector_space, real.discrete_linear_ordered_field,
|
||
smul := mul,
|
||
smul_left_distrib := left_distrib,
|
||
smul_right_distrib := right_distrib,
|
||
mul_smul := mul.assoc,
|
||
one_smul := one_mul
|
||
⦄
|
||
|
||
definition banach_space_real [trans_instance] [reducible] : banach_space ℝ :=
|
||
⦃ banach_space, real_vector_space_real,
|
||
norm := abs,
|
||
norm_zero := abs_zero,
|
||
eq_zero_of_norm_eq_zero := λ a H, eq_zero_of_abs_eq_zero H,
|
||
norm_triangle := abs_add_le_abs_add_abs,
|
||
norm_smul := abs_mul,
|
||
complete := λ X H, analysis.complete ℝ H
|
||
⦄
|
||
|
||
/- limits under pointwise operations -/
|
||
|
||
section limit_operations
|
||
variables {X Y : ℕ → ℝ}
|
||
variables {x y : ℝ}
|
||
|
||
proposition mul_left_converges_to_seq (c : ℝ) (HX : X ⟶ x in ℕ) :
|
||
(λ n, c * X n) ⟶ c * x in ℕ :=
|
||
smul_converges_to_seq c HX
|
||
|
||
proposition mul_right_converges_to_seq (c : ℝ) (HX : X ⟶ x in ℕ) :
|
||
(λ n, X n * c) ⟶ x * c in ℕ :=
|
||
have (λ n, X n * c) = (λ n, c * X n), from funext (take x, !mul.comm),
|
||
by+ rewrite [this, mul.comm]; apply mul_left_converges_to_seq c HX
|
||
|
||
theorem converges_to_seq_squeeze (HX : X ⟶ x in ℕ) (HY : Y ⟶ x in ℕ) {Z : ℕ → ℝ} (HZX : ∀ n, X n ≤ Z n)
|
||
(HZY : ∀ n, Z n ≤ Y n) : Z ⟶ x in ℕ :=
|
||
begin
|
||
intros ε Hε,
|
||
have Hε4 : ε / 4 > 0, from div_pos_of_pos_of_pos Hε four_pos,
|
||
cases HX Hε4 with N1 HN1,
|
||
cases HY Hε4 with N2 HN2,
|
||
existsi max N1 N2,
|
||
intro n Hn,
|
||
have HXY : abs (Y n - X n) < ε / 2, begin
|
||
apply lt_of_le_of_lt,
|
||
apply abs_sub_le _ x,
|
||
have Hε24 : ε / 2 = ε / 4 + ε / 4, from eq.symm !add_quarters,
|
||
rewrite Hε24,
|
||
apply add_lt_add,
|
||
apply HN2,
|
||
apply ge.trans Hn !le_max_right,
|
||
rewrite abs_sub,
|
||
apply HN1,
|
||
apply ge.trans Hn !le_max_left
|
||
end,
|
||
have HZX : abs (Z n - X n) < ε / 2, begin
|
||
have HZXnp : Z n - X n ≥ 0, from sub_nonneg_of_le !HZX,
|
||
have HXYnp : Y n - X n ≥ 0, from sub_nonneg_of_le (le.trans !HZX !HZY),
|
||
rewrite [abs_of_nonneg HZXnp, abs_of_nonneg HXYnp at HXY],
|
||
note Hgt := lt_add_of_sub_lt_right HXY,
|
||
have Hlt : Z n < ε / 2 + X n, from calc
|
||
Z n ≤ Y n : HZY
|
||
... < ε / 2 + X n : Hgt,
|
||
apply sub_lt_right_of_lt_add Hlt
|
||
end,
|
||
have H : abs (Z n - x) < ε, begin
|
||
apply lt_of_le_of_lt,
|
||
apply abs_sub_le _ (X n),
|
||
apply lt.trans,
|
||
apply add_lt_add,
|
||
apply HZX,
|
||
apply HN1,
|
||
apply ge.trans Hn !le_max_left,
|
||
apply div_two_add_div_four_lt Hε
|
||
end,
|
||
exact H
|
||
end
|
||
|
||
proposition converges_to_seq_of_abs_sub_converges_to_seq (Habs : (λ n, abs (X n - x)) ⟶ 0 in ℕ) :
|
||
X ⟶ x in ℕ :=
|
||
begin
|
||
intros ε Hε,
|
||
cases Habs Hε with N HN,
|
||
existsi N,
|
||
intro n Hn,
|
||
have Hn' : abs (abs (X n - x) - 0) < ε, from HN Hn,
|
||
rewrite [sub_zero at Hn', abs_abs at Hn'],
|
||
exact Hn'
|
||
end
|
||
|
||
proposition abs_sub_converges_to_seq_of_converges_to_seq (HX : X ⟶ x in ℕ) :
|
||
(λ n, abs (X n - x)) ⟶ 0 in ℕ :=
|
||
begin
|
||
intros ε Hε,
|
||
cases HX Hε with N HN,
|
||
existsi N,
|
||
intro n Hn,
|
||
have Hn' : abs (abs (X n - x) - 0) < ε, by rewrite [sub_zero, abs_abs]; apply HN Hn,
|
||
exact Hn'
|
||
end
|
||
|
||
proposition mul_converges_to_seq (HX : X ⟶ x in ℕ) (HY : Y ⟶ y in ℕ) :
|
||
(λ n, X n * Y n) ⟶ x * y in ℕ :=
|
||
have Hbd : ∃ K : ℝ, ∀ n : ℕ, abs (X n) ≤ K, begin
|
||
cases bounded_of_converges_seq HX with K HK,
|
||
existsi K + abs x,
|
||
intro n,
|
||
note Habs := le.trans (abs_abs_sub_abs_le_abs_sub (X n) x) !HK,
|
||
apply le_add_of_sub_right_le,
|
||
apply le.trans,
|
||
apply le_abs_self,
|
||
assumption
|
||
end,
|
||
obtain K HK, from Hbd,
|
||
have Habsle [visible] : ∀ n, abs (X n * Y n - x * y) ≤ K * abs (Y n - y) + abs y * abs (X n - x), begin
|
||
intro,
|
||
have Heq : X n * Y n - x * y = (X n * Y n - X n * y) + (X n * y - x * y), by
|
||
rewrite [-sub_add_cancel (X n * Y n) (X n * y) at {1}, sub_eq_add_neg, *add.assoc],
|
||
apply le.trans,
|
||
rewrite Heq,
|
||
apply abs_add_le_abs_add_abs,
|
||
apply add_le_add,
|
||
rewrite [-mul_sub_left_distrib, abs_mul],
|
||
apply mul_le_mul_of_nonneg_right,
|
||
apply HK,
|
||
apply abs_nonneg,
|
||
rewrite [-mul_sub_right_distrib, abs_mul, mul.comm],
|
||
apply le.refl
|
||
end,
|
||
have Hdifflim [visible] : (λ n, abs (X n * Y n - x * y)) ⟶ 0 in ℕ, begin
|
||
apply converges_to_seq_squeeze,
|
||
rotate 2,
|
||
intro, apply abs_nonneg,
|
||
apply Habsle,
|
||
apply converges_to_seq_constant,
|
||
rewrite -{0}zero_add,
|
||
apply add_converges_to_seq,
|
||
krewrite -(mul_zero K),
|
||
apply mul_left_converges_to_seq,
|
||
apply abs_sub_converges_to_seq_of_converges_to_seq,
|
||
exact HY,
|
||
krewrite -(mul_zero (abs y)),
|
||
apply mul_left_converges_to_seq,
|
||
apply abs_sub_converges_to_seq_of_converges_to_seq,
|
||
exact HX
|
||
end,
|
||
converges_to_seq_of_abs_sub_converges_to_seq Hdifflim
|
||
|
||
|
||
-- TODO: converges_to_seq_div, converges_to_seq_mul_left_iff, etc.
|
||
|
||
proposition abs_converges_to_seq_zero (HX : X ⟶ 0 in ℕ) : (λ n, abs (X n)) ⟶ 0 in ℕ :=
|
||
norm_converges_to_seq_zero HX
|
||
|
||
proposition converges_to_seq_zero_of_abs_converges_to_seq_zero (HX : (λ n, abs (X n)) ⟶ 0 in ℕ) :
|
||
X ⟶ 0 in ℕ :=
|
||
converges_to_seq_zero_of_norm_converges_to_seq_zero HX
|
||
|
||
proposition abs_converges_to_seq_zero_iff (X : ℕ → ℝ) :
|
||
((λ n, abs (X n)) ⟶ 0 in ℕ) ↔ (X ⟶ 0 in ℕ) :=
|
||
iff.intro converges_to_seq_zero_of_abs_converges_to_seq_zero abs_converges_to_seq_zero
|
||
|
||
-- TODO: products of two sequences, converges_seq, limit_seq
|
||
|
||
end limit_operations
|
||
|
||
/- properties of converges_to_at -/
|
||
|
||
section limit_operations_continuous
|
||
variables {f g : ℝ → ℝ}
|
||
variables {a b x y : ℝ}
|
||
|
||
theorem mul_converges_to_at (Hf : f ⟶ a at x) (Hg : g ⟶ b at x) : (λ z, f z * g z) ⟶ a * b at x :=
|
||
begin
|
||
apply converges_to_at_of_all_conv_seqs,
|
||
intro X HX,
|
||
apply mul_converges_to_seq,
|
||
note Hfc := all_conv_seqs_of_converges_to_at Hf,
|
||
apply Hfc _ HX,
|
||
note Hgb := all_conv_seqs_of_converges_to_at Hg,
|
||
apply Hgb _ HX
|
||
end
|
||
|
||
end limit_operations_continuous
|
||
|
||
/- monotone sequences -/
|
||
|
||
section monotone_sequences
|
||
open real set
|
||
variable {X : ℕ → ℝ}
|
||
|
||
definition nondecreasing (X : ℕ → ℝ) : Prop := ∀ ⦃i j⦄, i ≤ j → X i ≤ X j
|
||
|
||
proposition nondecreasing_of_forall_le_succ (H : ∀ i, X i ≤ X (succ i)) : nondecreasing X :=
|
||
take i j, suppose i ≤ j,
|
||
have ∀ n, X i ≤ X (i + n), from
|
||
take n, nat.induction_on n
|
||
(by rewrite nat.add_zero; apply le.refl)
|
||
(take n, assume ih, le.trans ih (H (i + n))),
|
||
have X i ≤ X (i + (j - i)), from !this,
|
||
by+ rewrite [add_sub_of_le `i ≤ j` at this]; exact this
|
||
|
||
proposition converges_to_seq_sup_of_nondecreasing (nondecX : nondecreasing X) {b : ℝ}
|
||
(Hb : ∀ i, X i ≤ b) : X ⟶ sup (X ' univ) in ℕ :=
|
||
let sX := sup (X ' univ) in
|
||
have Xle : ∀ i, X i ≤ sX, from
|
||
take i,
|
||
have ∀ x, x ∈ X ' univ → x ≤ b, from
|
||
(take x, assume H,
|
||
obtain i [H' (Hi : X i = x)], from H,
|
||
by rewrite -Hi; exact Hb i),
|
||
show X i ≤ sX, from le_sup (mem_image_of_mem X !mem_univ) this,
|
||
have exX : ∃ x, x ∈ X ' univ,
|
||
from exists.intro (X 0) (mem_image_of_mem X !mem_univ),
|
||
take ε, assume epos : ε > 0,
|
||
have sX - ε < sX, from !sub_lt_of_pos epos,
|
||
obtain x' [(H₁x' : x' ∈ X ' univ) (H₂x' : sX - ε < x')],
|
||
from exists_mem_and_lt_of_lt_sup exX this,
|
||
obtain i [H' (Hi : X i = x')], from H₁x',
|
||
have Hi' : ∀ j, j ≥ i → sX - ε < X j, from
|
||
take j, assume Hj, lt_of_lt_of_le (by rewrite Hi; apply H₂x') (nondecX Hj),
|
||
exists.intro i
|
||
(take j, assume Hj : j ≥ i,
|
||
have X j - sX ≤ 0, from sub_nonpos_of_le (Xle j),
|
||
have eq₁ : abs (X j - sX) = sX - X j, using this, by rewrite [abs_of_nonpos this, neg_sub],
|
||
have sX - ε < X j, from lt_of_lt_of_le (by rewrite Hi; apply H₂x') (nondecX Hj),
|
||
have sX < X j + ε, from lt_add_of_sub_lt_right this,
|
||
have sX - X j < ε, from sub_lt_left_of_lt_add this,
|
||
show (abs (X j - sX)) < ε, using eq₁ this, by rewrite eq₁; exact this)
|
||
|
||
definition nonincreasing (X : ℕ → ℝ) : Prop := ∀ ⦃i j⦄, i ≤ j → X i ≥ X j
|
||
|
||
proposition nodecreasing_of_nonincreasing_neg (nonincX : nonincreasing (λ n, - X n)) :
|
||
nondecreasing (λ n, X n) :=
|
||
take i j, suppose i ≤ j,
|
||
show X i ≤ X j, from le_of_neg_le_neg (nonincX this)
|
||
|
||
proposition noincreasing_neg_of_nondecreasing (nondecX : nondecreasing X) :
|
||
nonincreasing (λ n, - X n) :=
|
||
take i j, suppose i ≤ j,
|
||
show - X i ≥ - X j, from neg_le_neg (nondecX this)
|
||
|
||
proposition nonincreasing_neg_iff (X : ℕ → ℝ) : nonincreasing (λ n, - X n) ↔ nondecreasing X :=
|
||
iff.intro nodecreasing_of_nonincreasing_neg noincreasing_neg_of_nondecreasing
|
||
|
||
proposition nonincreasing_of_nondecreasing_neg (nondecX : nondecreasing (λ n, - X n)) :
|
||
nonincreasing (λ n, X n) :=
|
||
take i j, suppose i ≤ j,
|
||
show X i ≥ X j, from le_of_neg_le_neg (nondecX this)
|
||
|
||
proposition nodecreasing_neg_of_nonincreasing (nonincX : nonincreasing X) :
|
||
nondecreasing (λ n, - X n) :=
|
||
take i j, suppose i ≤ j,
|
||
show - X i ≤ - X j, from neg_le_neg (nonincX this)
|
||
|
||
proposition nondecreasing_neg_iff (X : ℕ → ℝ) : nondecreasing (λ n, - X n) ↔ nonincreasing X :=
|
||
iff.intro nonincreasing_of_nondecreasing_neg nodecreasing_neg_of_nonincreasing
|
||
|
||
proposition nonincreasing_of_forall_succ_le (H : ∀ i, X (succ i) ≤ X i) : nonincreasing X :=
|
||
begin
|
||
rewrite -nondecreasing_neg_iff,
|
||
show nondecreasing (λ n : ℕ, - X n), from
|
||
nondecreasing_of_forall_le_succ (take i, neg_le_neg (H i))
|
||
end
|
||
|
||
proposition converges_to_seq_inf_of_nonincreasing (nonincX : nonincreasing X) {b : ℝ}
|
||
(Hb : ∀ i, b ≤ X i) : X ⟶ inf (X ' univ) in ℕ :=
|
||
have H₁ : ∃ x, x ∈ X ' univ, from exists.intro (X 0) (mem_image_of_mem X !mem_univ),
|
||
have H₂ : ∀ x, x ∈ X ' univ → b ≤ x, from
|
||
(take x, assume H,
|
||
obtain i [Hi₁ (Hi₂ : X i = x)], from H,
|
||
show b ≤ x, by rewrite -Hi₂; apply Hb i),
|
||
have H₃ : {x : ℝ | -x ∈ X ' univ} = {x : ℝ | x ∈ (λ n, -X n) ' univ}, from calc
|
||
{x : ℝ | -x ∈ X ' univ} = (λ y, -y) ' (X ' univ) : by rewrite image_neg_eq
|
||
... = {x : ℝ | x ∈ (λ n, -X n) ' univ} : image_compose,
|
||
have H₄ : ∀ i, - X i ≤ - b, from take i, neg_le_neg (Hb i),
|
||
begin+
|
||
-- need krewrite here
|
||
krewrite [-neg_converges_to_seq_iff, -sup_neg H₁ H₂, H₃, -nondecreasing_neg_iff at nonincX],
|
||
apply converges_to_seq_sup_of_nondecreasing nonincX H₄
|
||
end
|
||
|
||
end monotone_sequences
|
||
|
||
/- x^n converges to 0 if abs x < 1 -/
|
||
|
||
section xn
|
||
open nat set
|
||
|
||
theorem pow_converges_to_seq_zero {x : ℝ} (H : abs x < 1) :
|
||
(λ n, x^n) ⟶ 0 in ℕ :=
|
||
suffices H' : (λ n, (abs x)^n) ⟶ 0 in ℕ, from
|
||
have (λ n, (abs x)^n) = (λ n, abs (x^n)), from funext (take n, eq.symm !abs_pow),
|
||
using this,
|
||
by rewrite this at H'; exact converges_to_seq_zero_of_abs_converges_to_seq_zero H',
|
||
let aX := (λ n, (abs x)^n),
|
||
iaX := real.inf (aX ' univ),
|
||
asX := (λ n, (abs x)^(succ n)) in
|
||
have noninc_aX : nonincreasing aX, from
|
||
nonincreasing_of_forall_succ_le
|
||
(take i,
|
||
assert (abs x) * (abs x)^i ≤ 1 * (abs x)^i,
|
||
from mul_le_mul_of_nonneg_right (le_of_lt H) (!pow_nonneg_of_nonneg !abs_nonneg),
|
||
assert (abs x) * (abs x)^i ≤ (abs x)^i, by krewrite one_mul at this; exact this,
|
||
show (abs x) ^ (succ i) ≤ (abs x)^i, by rewrite pow_succ; apply this),
|
||
have bdd_aX : ∀ i, 0 ≤ aX i, from take i, !pow_nonneg_of_nonneg !abs_nonneg,
|
||
assert aXconv : aX ⟶ iaX in ℕ, proof converges_to_seq_inf_of_nonincreasing noninc_aX bdd_aX qed,
|
||
have asXconv : asX ⟶ iaX in ℕ, from converges_to_seq_offset_succ aXconv,
|
||
have asXconv' : asX ⟶ (abs x) * iaX in ℕ, from mul_left_converges_to_seq (abs x) aXconv,
|
||
have iaX = (abs x) * iaX, from converges_to_seq_unique asXconv asXconv',
|
||
assert iaX = 0, from eq_zero_of_mul_eq_self_left (ne_of_lt H) (eq.symm this),
|
||
show aX ⟶ 0 in ℕ, begin rewrite -this, exact aXconv end --from this ▸ aXconv
|
||
|
||
end xn
|
||
|
||
/- continuity on the reals -/
|
||
|
||
section continuous
|
||
|
||
theorem continuous_real_elim {f : ℝ → ℝ} (H : continuous f) :
|
||
∀ x : ℝ, ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ δ : ℝ, δ > 0 ∧ ∀ x' : ℝ,
|
||
abs (x' - x) < δ → abs (f x' - f x) < ε :=
|
||
take x, continuous_at_elim (H x)
|
||
|
||
theorem continuous_real_intro {f : ℝ → ℝ}
|
||
(H : ∀ x : ℝ, ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ δ : ℝ, δ > 0 ∧ ∀ x' : ℝ,
|
||
abs (x' - x) < δ → abs (f x' - f x) < ε) :
|
||
continuous f :=
|
||
take x, continuous_at_intro (H x)
|
||
|
||
theorem pos_on_nbhd_of_cts_of_pos {f : ℝ → ℝ} (Hf : continuous f) {b : ℝ} (Hb : f b > 0) :
|
||
∃ δ : ℝ, δ > 0 ∧ ∀ y, abs (y - b) < δ → f y > 0 :=
|
||
begin
|
||
let Hcont := continuous_real_elim Hf b Hb,
|
||
cases Hcont with δ Hδ,
|
||
existsi δ,
|
||
split,
|
||
exact and.left Hδ,
|
||
intro y Hy,
|
||
let Hy' := and.right Hδ y Hy,
|
||
note Hlt := sub_lt_of_abs_sub_lt_left Hy',
|
||
rewrite sub_self at Hlt,
|
||
assumption
|
||
end
|
||
|
||
theorem neg_on_nbhd_of_cts_of_neg {f : ℝ → ℝ} (Hf : continuous f) {b : ℝ} (Hb : f b < 0) :
|
||
∃ δ : ℝ, δ > 0 ∧ ∀ y, abs (y - b) < δ → f y < 0 :=
|
||
begin
|
||
let Hcont := continuous_real_elim Hf b (neg_pos_of_neg Hb),
|
||
cases Hcont with δ Hδ,
|
||
existsi δ,
|
||
split,
|
||
exact and.left Hδ,
|
||
intro y Hy,
|
||
let Hy' := and.right Hδ y Hy,
|
||
let Hlt := sub_lt_of_abs_sub_lt_right Hy',
|
||
note Hlt' := lt_add_of_sub_lt_left Hlt,
|
||
rewrite [add.comm at Hlt', -sub_eq_add_neg at Hlt', sub_self at Hlt'],
|
||
assumption
|
||
end
|
||
|
||
theorem continuous_neg_of_continuous {f : ℝ → ℝ} (Hcon : continuous f) : continuous (λ x, - f x) :=
|
||
begin
|
||
apply continuous_real_intro,
|
||
intros x ε Hε,
|
||
cases continuous_real_elim Hcon x Hε with δ Hδ,
|
||
cases Hδ with Hδ₁ Hδ₂,
|
||
existsi δ,
|
||
split,
|
||
assumption,
|
||
intros x' Hx',
|
||
let HD := Hδ₂ x' Hx',
|
||
rewrite [-abs_neg, neg_neg_sub_neg],
|
||
exact HD
|
||
end
|
||
|
||
theorem continuous_offset_of_continuous {f : ℝ → ℝ} (Hcon : continuous f) (a : ℝ) :
|
||
continuous (λ x, (f x) + a) :=
|
||
begin
|
||
apply continuous_real_intro,
|
||
intros x ε Hε,
|
||
cases continuous_real_elim Hcon x Hε with δ Hδ,
|
||
cases Hδ with Hδ₁ Hδ₂,
|
||
existsi δ,
|
||
split,
|
||
assumption,
|
||
intros x' Hx',
|
||
rewrite [add_sub_comm, sub_self, add_zero],
|
||
apply Hδ₂,
|
||
assumption
|
||
end
|
||
|
||
theorem continuous_mul_of_continuous {f g : ℝ → ℝ} (Hconf : continuous f) (Hcong : continuous g) :
|
||
continuous (λ x, f x * g x) :=
|
||
begin
|
||
intro x,
|
||
apply continuous_at_of_converges_to_at,
|
||
apply mul_converges_to_at,
|
||
all_goals apply converges_to_at_of_continuous_at,
|
||
apply Hconf,
|
||
apply Hcong
|
||
end
|
||
|
||
end continuous
|