lean2/hott/algebra/category/adjoint.hlean
Floris van Doorn 297d50378d feat(hott): add definitions using truncations and theorems about them
define embedding, (split) surjection, retraction, existential quantifier, 'or' connective
also add a whole bunch of theorems about these definitions

still has two sorry's which can be solved after #564 is closed
2015-04-29 10:04:07 -07:00

162 lines
5.7 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: algebra.precategory.adjoint
Authors: Floris van Doorn
-/
import algebra.category.constructions .constructions types.function arity
open category functor nat_trans eq is_trunc iso equiv prod trunc function
namespace category
variables {C D : Precategory} {F : C ⇒ D}
-- do we want to have a structure "is_adjoint" and define
-- structure is_left_adjoint (F : C ⇒ D) :=
-- (right_adjoint : D ⇒ C) -- G
-- (is_adjoint : adjoint F right_adjoint)
structure is_left_adjoint [class] (F : C ⇒ D) :=
(G : D ⇒ C)
(η : functor.id ⟹ G ∘f F)
(ε : F ∘f G ⟹ functor.id)
(H : Π(c : C), (ε (F c)) ∘ (F (η c)) = ID (F c))
(K : Π(d : D), (G (ε d)) ∘ (η (G d)) = ID (G d))
abbreviation right_adjoint := @is_left_adjoint.G
abbreviation unit := @is_left_adjoint.η
abbreviation counit := @is_left_adjoint.ε
-- structure is_left_adjoint [class] (F : C ⇒ D) :=
-- (right_adjoint : D ⇒ C) -- G
-- (unit : functor.id ⟹ right_adjoint ∘f F) -- η
-- (counit : F ∘f right_adjoint ⟹ functor.id) -- ε
-- (H : Π(c : C), (counit (F c)) ∘ (F (unit c)) = ID (F c))
-- (K : Π(d : D), (right_adjoint (counit d)) ∘ (unit (right_adjoint d)) = ID (right_adjoint d))
structure is_equivalence [class] (F : C ⇒ D) extends is_left_adjoint F :=
mk' ::
(is_iso_unit : is_iso η)
(is_iso_counit : is_iso ε)
structure equivalence (C D : Precategory) :=
(to_functor : C ⇒ D)
(struct : is_equivalence to_functor)
--TODO: review and change
--TODO: make some or all of these structures?
definition faithful (F : C ⇒ D) :=
Π⦃c c' : C⦄ (f f' : c ⟶ c'), F f = F f' → f = f'
definition full (F : C ⇒ D) := Π⦃c c' : C⦄ (g : F c ⟶ F c'), ∃(f : c ⟶ c'), F f = g
definition fully_faithful [reducible] (F : C ⇒ D) := Π⦃c c' : C⦄, is_equiv (@to_fun_hom _ _ F c c')
definition split_essentially_surjective (F : C ⇒ D) :=
Π⦃d : D⦄, Σ(c : C), F c ≅ d
definition essentially_surjective (F : C ⇒ D) :=
Π⦃d : D⦄, ∃(c : C), F c ≅ d
definition is_weak_equivalence (F : C ⇒ D) :=
fully_faithful F × essentially_surjective F
definition is_isomorphism (F : C ⇒ D) :=
fully_faithful F × is_equiv (to_fun_ob F)
structure isomorphism (C D : Precategory) :=
(to_functor : C ⇒ D)
(struct : is_isomorphism to_functor)
-- infix `⊣`:55 := adjoint
infix `⋍`:25 := equivalence -- \backsimeq or \equiv
infix `≌`:25 := isomorphism -- \backcong or \iso
definition is_hprop_is_left_adjoint {C : Category} {D : Precategory} (F : C ⇒ D)
: is_hprop (is_left_adjoint F) :=
begin
apply is_hprop.mk,
intros [G, G'], cases G with [G, η, ε, H, K], cases G' with [G', η', ε', H', K'],
fapply (apd011111 is_left_adjoint.mk),
{ fapply functor_eq,
{ intro d, apply eq_of_iso, fapply iso.MK,
{ exact (G' (ε d) ∘ η' (G d))},
{ exact (G (ε' d) ∘ η (G' d))},
{ apply sorry /-rewrite [assoc, -{((G (ε' d)) ∘ (η (G' d))) ∘ (G' (ε d))}(assoc)],-/
-- apply concat, apply (ap (λc, c ∘ η' _)), rewrite -assoc, apply idp
},
--/-rewrite [-nat_trans.assoc]-/apply sorry
---assoc (G (ε' d)) (η (G' d)) (G' (ε d))
{ apply sorry}},
{ apply sorry},
},
{ apply sorry},
{ apply sorry},
{ apply is_hprop.elim},
{ apply is_hprop.elim},
end
definition is_equivalence.mk (F : C ⇒ D) (G : D ⇒ C) (η : G ∘f F ≅ functor.id)
(ε : F ∘f G ≅ functor.id) : is_equivalence F :=
sorry
definition full_of_fully_faithful (H : fully_faithful F) : full F :=
sorry --λc c' g, trunc.elim _ _
definition faithful_of_fully_faithful (H : fully_faithful F) : faithful F :=
λc c' f f' p, is_injective_of_is_embedding p
definition fully_faithful_of_full_of_faithful (H : faithful F) (K : full F) : fully_faithful F :=
sorry
definition fully_faithful_equiv (F : C ⇒ D) : fully_faithful F ≃ (faithful F × full F) :=
sorry
definition is_equivalence_equiv (F : C ⇒ D)
: is_equivalence F ≃ (fully_faithful F × split_essentially_surjective F) :=
sorry
definition is_hprop_is_weak_equivalence (F : C ⇒ D) : is_hprop (is_weak_equivalence F) :=
sorry
definition is_hprop_is_equivalence {C D : Category} (F : C ⇒ D) : is_hprop (is_equivalence F) :=
sorry
definition is_equivalence_equiv_is_weak_equivalence {C D : Category} (F : C ⇒ D)
: is_equivalence F ≃ is_weak_equivalence F :=
sorry
definition is_hprop_is_isomorphism (F : C ⇒ D) : is_hprop (is_isomorphism F) :=
sorry
definition is_isomorphism_equiv1 (F : C ⇒ D) : is_equivalence F
≃ Σ(G : D ⇒ C) (η : functor.id = G ∘f F) (ε : F ∘f G = functor.id),
sorry ▹ ap (λ(H : C ⇒ C), F ∘f H) η = ap (λ(H : D ⇒ D), H ∘f F) ε⁻¹ :=
sorry
definition is_isomorphism_equiv2 (F : C ⇒ D) : is_equivalence F
≃ ∃(G : D ⇒ C), functor.id = G ∘f F × F ∘f G = functor.id :=
sorry
definition is_equivalence_of_isomorphism (H : is_isomorphism F) : is_equivalence F :=
sorry
definition is_isomorphism_of_is_equivalence {C D : Category} {F : C ⇒ D} (H : is_equivalence F)
: is_isomorphism F :=
sorry
definition isomorphism_of_eq {C D : Precategory} (p : C = D) : C ≌ D :=
sorry
definition is_equiv_isomorphism_of_eq (C D : Precategory) : is_equiv (@isomorphism_of_eq C D) :=
sorry
definition equivalence_of_eq {C D : Precategory} (p : C = D) : C ⋍ D :=
sorry
definition is_equiv_equivalence_of_eq (C D : Category) : is_equiv (@equivalence_of_eq C D) :=
sorry
end category