297d50378d
define embedding, (split) surjection, retraction, existential quantifier, 'or' connective also add a whole bunch of theorems about these definitions still has two sorry's which can be solved after #564 is closed
162 lines
5.7 KiB
Text
162 lines
5.7 KiB
Text
/-
|
||
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
|
||
Module: algebra.precategory.adjoint
|
||
Authors: Floris van Doorn
|
||
-/
|
||
|
||
import algebra.category.constructions .constructions types.function arity
|
||
|
||
open category functor nat_trans eq is_trunc iso equiv prod trunc function
|
||
|
||
namespace category
|
||
variables {C D : Precategory} {F : C ⇒ D}
|
||
|
||
-- do we want to have a structure "is_adjoint" and define
|
||
-- structure is_left_adjoint (F : C ⇒ D) :=
|
||
-- (right_adjoint : D ⇒ C) -- G
|
||
-- (is_adjoint : adjoint F right_adjoint)
|
||
|
||
structure is_left_adjoint [class] (F : C ⇒ D) :=
|
||
(G : D ⇒ C)
|
||
(η : functor.id ⟹ G ∘f F)
|
||
(ε : F ∘f G ⟹ functor.id)
|
||
(H : Π(c : C), (ε (F c)) ∘ (F (η c)) = ID (F c))
|
||
(K : Π(d : D), (G (ε d)) ∘ (η (G d)) = ID (G d))
|
||
|
||
abbreviation right_adjoint := @is_left_adjoint.G
|
||
abbreviation unit := @is_left_adjoint.η
|
||
abbreviation counit := @is_left_adjoint.ε
|
||
|
||
-- structure is_left_adjoint [class] (F : C ⇒ D) :=
|
||
-- (right_adjoint : D ⇒ C) -- G
|
||
-- (unit : functor.id ⟹ right_adjoint ∘f F) -- η
|
||
-- (counit : F ∘f right_adjoint ⟹ functor.id) -- ε
|
||
-- (H : Π(c : C), (counit (F c)) ∘ (F (unit c)) = ID (F c))
|
||
-- (K : Π(d : D), (right_adjoint (counit d)) ∘ (unit (right_adjoint d)) = ID (right_adjoint d))
|
||
|
||
structure is_equivalence [class] (F : C ⇒ D) extends is_left_adjoint F :=
|
||
mk' ::
|
||
(is_iso_unit : is_iso η)
|
||
(is_iso_counit : is_iso ε)
|
||
|
||
structure equivalence (C D : Precategory) :=
|
||
(to_functor : C ⇒ D)
|
||
(struct : is_equivalence to_functor)
|
||
|
||
--TODO: review and change
|
||
--TODO: make some or all of these structures?
|
||
definition faithful (F : C ⇒ D) :=
|
||
Π⦃c c' : C⦄ (f f' : c ⟶ c'), F f = F f' → f = f'
|
||
|
||
definition full (F : C ⇒ D) := Π⦃c c' : C⦄ (g : F c ⟶ F c'), ∃(f : c ⟶ c'), F f = g
|
||
|
||
definition fully_faithful [reducible] (F : C ⇒ D) := Π⦃c c' : C⦄, is_equiv (@to_fun_hom _ _ F c c')
|
||
|
||
definition split_essentially_surjective (F : C ⇒ D) :=
|
||
Π⦃d : D⦄, Σ(c : C), F c ≅ d
|
||
|
||
definition essentially_surjective (F : C ⇒ D) :=
|
||
Π⦃d : D⦄, ∃(c : C), F c ≅ d
|
||
|
||
definition is_weak_equivalence (F : C ⇒ D) :=
|
||
fully_faithful F × essentially_surjective F
|
||
|
||
definition is_isomorphism (F : C ⇒ D) :=
|
||
fully_faithful F × is_equiv (to_fun_ob F)
|
||
|
||
structure isomorphism (C D : Precategory) :=
|
||
(to_functor : C ⇒ D)
|
||
(struct : is_isomorphism to_functor)
|
||
-- infix `⊣`:55 := adjoint
|
||
|
||
infix `⋍`:25 := equivalence -- \backsimeq or \equiv
|
||
infix `≌`:25 := isomorphism -- \backcong or \iso
|
||
|
||
definition is_hprop_is_left_adjoint {C : Category} {D : Precategory} (F : C ⇒ D)
|
||
: is_hprop (is_left_adjoint F) :=
|
||
begin
|
||
apply is_hprop.mk,
|
||
intros [G, G'], cases G with [G, η, ε, H, K], cases G' with [G', η', ε', H', K'],
|
||
fapply (apd011111 is_left_adjoint.mk),
|
||
{ fapply functor_eq,
|
||
{ intro d, apply eq_of_iso, fapply iso.MK,
|
||
{ exact (G' (ε d) ∘ η' (G d))},
|
||
{ exact (G (ε' d) ∘ η (G' d))},
|
||
{ apply sorry /-rewrite [assoc, -{((G (ε' d)) ∘ (η (G' d))) ∘ (G' (ε d))}(assoc)],-/
|
||
-- apply concat, apply (ap (λc, c ∘ η' _)), rewrite -assoc, apply idp
|
||
},
|
||
--/-rewrite [-nat_trans.assoc]-/apply sorry
|
||
---assoc (G (ε' d)) (η (G' d)) (G' (ε d))
|
||
{ apply sorry}},
|
||
{ apply sorry},
|
||
},
|
||
{ apply sorry},
|
||
{ apply sorry},
|
||
{ apply is_hprop.elim},
|
||
{ apply is_hprop.elim},
|
||
end
|
||
|
||
definition is_equivalence.mk (F : C ⇒ D) (G : D ⇒ C) (η : G ∘f F ≅ functor.id)
|
||
(ε : F ∘f G ≅ functor.id) : is_equivalence F :=
|
||
sorry
|
||
|
||
definition full_of_fully_faithful (H : fully_faithful F) : full F :=
|
||
sorry --λc c' g, trunc.elim _ _
|
||
|
||
definition faithful_of_fully_faithful (H : fully_faithful F) : faithful F :=
|
||
λc c' f f' p, is_injective_of_is_embedding p
|
||
|
||
definition fully_faithful_of_full_of_faithful (H : faithful F) (K : full F) : fully_faithful F :=
|
||
sorry
|
||
|
||
definition fully_faithful_equiv (F : C ⇒ D) : fully_faithful F ≃ (faithful F × full F) :=
|
||
sorry
|
||
|
||
definition is_equivalence_equiv (F : C ⇒ D)
|
||
: is_equivalence F ≃ (fully_faithful F × split_essentially_surjective F) :=
|
||
sorry
|
||
|
||
definition is_hprop_is_weak_equivalence (F : C ⇒ D) : is_hprop (is_weak_equivalence F) :=
|
||
sorry
|
||
|
||
definition is_hprop_is_equivalence {C D : Category} (F : C ⇒ D) : is_hprop (is_equivalence F) :=
|
||
sorry
|
||
|
||
definition is_equivalence_equiv_is_weak_equivalence {C D : Category} (F : C ⇒ D)
|
||
: is_equivalence F ≃ is_weak_equivalence F :=
|
||
sorry
|
||
|
||
definition is_hprop_is_isomorphism (F : C ⇒ D) : is_hprop (is_isomorphism F) :=
|
||
sorry
|
||
|
||
definition is_isomorphism_equiv1 (F : C ⇒ D) : is_equivalence F
|
||
≃ Σ(G : D ⇒ C) (η : functor.id = G ∘f F) (ε : F ∘f G = functor.id),
|
||
sorry ▹ ap (λ(H : C ⇒ C), F ∘f H) η = ap (λ(H : D ⇒ D), H ∘f F) ε⁻¹ :=
|
||
sorry
|
||
|
||
definition is_isomorphism_equiv2 (F : C ⇒ D) : is_equivalence F
|
||
≃ ∃(G : D ⇒ C), functor.id = G ∘f F × F ∘f G = functor.id :=
|
||
sorry
|
||
|
||
definition is_equivalence_of_isomorphism (H : is_isomorphism F) : is_equivalence F :=
|
||
sorry
|
||
|
||
definition is_isomorphism_of_is_equivalence {C D : Category} {F : C ⇒ D} (H : is_equivalence F)
|
||
: is_isomorphism F :=
|
||
sorry
|
||
|
||
definition isomorphism_of_eq {C D : Precategory} (p : C = D) : C ≌ D :=
|
||
sorry
|
||
|
||
definition is_equiv_isomorphism_of_eq (C D : Precategory) : is_equiv (@isomorphism_of_eq C D) :=
|
||
sorry
|
||
|
||
definition equivalence_of_eq {C D : Precategory} (p : C = D) : C ⋍ D :=
|
||
sorry
|
||
|
||
definition is_equiv_equivalence_of_eq (C D : Category) : is_equiv (@equivalence_of_eq C D) :=
|
||
sorry
|
||
|
||
end category
|