lean2/library/algebra/ring.lean
2014-11-30 20:34:12 -08:00

346 lines
12 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: algebra.ring
Authors: Jeremy Avigad, Leonardo de Moura
Structures with multiplicative and additive components, including semirings, rings, and fields.
The development is modeled after Isabelle's library.
-/
import logic.eq data.unit data.sigma data.prod
import algebra.function algebra.binary algebra.group
open eq eq.ops
namespace algebra
variable {A : Type}
/- auxiliary classes -/
structure distrib [class] (A : Type) extends has_mul A, has_add A :=
(distrib_left : ∀a b c, mul a (add b c) = add (mul a b) (mul a c))
(distrib_right : ∀a b c, mul (add a b) c = add (mul a c) (mul b c))
theorem distrib_left [s : distrib A] (a b c : A) : a * (b + c) = a * b + a * c := !distrib.distrib_left
theorem distrib_right [s: distrib A] (a b c : A) : (a + b) * c = a * c + b * c := !distrib.distrib_right
structure mul_zero [class] (A : Type) extends has_mul A, has_zero A :=
(mul_zero_left : ∀a, mul zero a = zero)
(mul_zero_right : ∀a, mul a zero = zero)
theorem mul_zero_left [s : mul_zero A] (a : A) : 0 * a = 0 := !mul_zero.mul_zero_left
theorem mul_zero_right [s : mul_zero A] (a : A) : a * 0 = 0 := !mul_zero.mul_zero_right
structure zero_ne_one_class [class] (A : Type) extends has_zero A, has_one A :=
(zero_ne_one : zero ≠ one)
theorem zero_ne_one [s: zero_ne_one_class A] : 0 ≠ 1 := !zero_ne_one_class.zero_ne_one
/- semiring -/
structure semiring [class] (A : Type) extends add_comm_monoid A, monoid A, distrib A, mul_zero A,
zero_ne_one_class A
structure comm_semiring [class] (A : Type) extends semiring A, comm_semigroup A
/- abstract divisibility -/
structure has_dvd [class] (A : Type) extends has_mul A :=
(dvd : A → A → Prop)
(dvd_intro : ∀a b c, mul a b = c → dvd a c)
(dvd_imp_exists : ∀ a b, dvd a b → ∃c, mul a c = b)
definition dvd [s : has_dvd A] (a b : A) : Prop := has_dvd.dvd a b
infix `|` := dvd
theorem dvd_intro [s : has_dvd A] {a b c : A} : a * b = c → a | c := !has_dvd.dvd_intro
theorem dvd_imp_exists [s : has_dvd A] {a b : A} : a | b → ∃c, a * c = b := !has_dvd.dvd_imp_exists
theorem dvd_elim [s : has_dvd A] {P : Prop} {a b : A} (H₁ : a | b) (H₂ : ∀c, a * c = b → P) : P :=
exists_elim (dvd_imp_exists H₁) H₂
structure comm_semiring_dvd [class] (A : Type) extends comm_semiring A, has_dvd A
section comm_semiring_dvd
variables [s : comm_semiring_dvd A] (a b c : A)
include s
theorem dvd_refl : a | a := dvd_intro (!mul_right_id)
theorem dvd_trans {a b c : A} (H₁ : a | b) (H₂ : b | c) : a | c :=
dvd_elim H₁
(take d, assume H₃ : a * d = b,
dvd_elim H₂
(take e, assume H₄ : b * e = c,
@dvd_intro _ _ _ (d * e) _
(calc
a * (d * e) = (a * d) * e : mul_assoc
... = b * e : H₃
... = c : H₄)))
theorem zero_dvd {H : 0 | a} : a = 0 :=
dvd_elim H (take c, assume H' : 0 * c = a, (H')⁻¹ ⬝ !mul_zero_left)
theorem dvd_zero : a | 0 := dvd_intro !mul_zero_right
theorem one_dvd : 1 | a := dvd_intro !mul_left_id
theorem dvd_mul_right : a | a * b := dvd_intro rfl
theorem dvd_mul_left : a | b * a := !mul_comm ▸ !dvd_mul_right
theorem dvd_imp_dvd_mul_right {a b : A} (H : a | b) (c : A) : a | b * c :=
dvd_elim H
(take d,
assume H₁ : a * d = b,
dvd_intro
(calc
a * (d * c) = a * d * c : mul_assoc
... = b * c : H₁))
theorem dvd_imp_dvd_mul_left {a b : A} (H : a | b) (c : A) : a | c * b :=
!mul_comm ▸ (dvd_imp_dvd_mul_right H _)
theorem mul_dvd_mono {a b c d : A} (dvd_ab : a | b) (dvd_cd : c | d) : a * c | b * d :=
dvd_elim dvd_ab
(take e, assume Haeb : a * e = b,
dvd_elim dvd_cd
(take f, assume Hcfd : c * f = d,
dvd_intro
(calc
a * c * (e * f) = a * (c * (e * f)) : mul_assoc
... = a * (e * (c * f)) : mul_left_comm
... = a * e * (c * f) : mul_assoc
... = b * (c * f) : Haeb
... = b * d : Hcfd)))
theorem mul_dvd_imp_dvd_left {a b c : A} (H : a * b | c) : a | c :=
dvd_elim H (take d, assume Habdc : a * b * d = c, dvd_intro (!mul_assoc⁻¹ ⬝ Habdc))
theorem mul_dvd_imp_dvd_right {a b c : A} (H : a * b | c) : b | c :=
mul_dvd_imp_dvd_left (!mul_comm ▸ H)
theorem dvd_add {a b c : A} (Hab : a | b) (Hac : a | c) : a | b + c :=
dvd_elim Hab
(take d, assume Hadb : a * d = b,
dvd_elim Hac
(take e, assume Haec : a * e = c,
dvd_intro (show a * (d + e) = b + c, from Hadb ▸ Haec ▸ !distrib_left)))
end comm_semiring_dvd
/- ring -/
structure ring [class] (A : Type) extends add_comm_group A, monoid A, distrib A, zero_ne_one_class A
definition ring.to_semiring [instance] [s : ring A] : semiring A :=
semiring.mk ring.add ring.add_assoc !ring.zero ring.add_left_id
add_right_id -- note: we've shown that add_right_id follows from add_left_id in add_comm_group
ring.add_comm ring.mul ring.mul_assoc !ring.one ring.mul_left_id ring.mul_right_id
ring.distrib_left ring.distrib_right
(take a,
have H : 0 * a + 0 = 0 * a + 0 * a, from
calc
0 * a + 0 = 0 * a : add_right_id
... = (0 + 0) * a : add_right_id
... = 0 * a + 0 * a : ring.distrib_right,
show 0 * a = 0, from (add_left_cancel H)⁻¹)
(take a,
have H : a * 0 + 0 = a * 0 + a * 0, from
calc
a * 0 + 0 = a * 0 : add_right_id
... = a * (0 + 0) : add_right_id
... = a * 0 + a * 0 : ring.distrib_left,
show a * 0 = 0, from (add_left_cancel H)⁻¹)
!ring.zero_ne_one
section
variables [s : ring A] (a b c d e : A)
include s
theorem neg_mul_left : -(a * b) = -a * b :=
neg_unique
(calc
a * b + -a * b = (a + -a) * b : distrib_right
... = 0 * b : add_right_inv
... = 0 : mul_zero_left)
theorem neg_mul_right : -(a * b) = a * -b :=
neg_unique
(calc
a * b + a * -b = a * (b + -b) : distrib_left
... = a * 0 : add_right_inv
... = 0 : mul_zero_right)
theorem neg_mul_neg : -a * -b = a * b :=
calc
-a * -b = -(a * -b) : neg_mul_left
... = - -(a * b) : neg_mul_right
... = a * b : neg_neg
theorem neg_mul_comm : -a * b = a * -b := !neg_mul_left⁻¹ ⬝ !neg_mul_right
theorem minus_distrib_left : a * (b - c) = a * b - a * c :=
calc
a * (b - c) = a * b + a * -c : distrib_left
... = a * b + - (a * c) : neg_mul_right
... = a * b - a * c : rfl
theorem minus_distrib_right : (a - b) * c = a * c - b * c :=
calc
(a - b) * c = a * c + -b * c : distrib_right
... = a * c + - (b * c) : neg_mul_left
... = a * c - b * c : rfl
-- TODO: can calc mode be improved to make this easier?
-- TODO: there is also the other direction. It will be easier when we
-- have the simplifier.
theorem eq_add_iff1 : a * e + c = b * e + d ↔ (a - b) * e + c = d :=
calc
a * e + c = b * e + d ↔ a * e + c = d + b * e : !add_comm ▸ !iff.refl
... ↔ a * e + c - b * e = d : iff.symm !minus_eq_iff_eq_add
... ↔ a * e - b * e + c = d : !minus_add_right_comm ▸ !iff.refl
... ↔ (a - b) * e + c = d : !minus_distrib_right ▸ !iff.refl
end
structure comm_ring [class] (A : Type) extends ring A, comm_semigroup A
definition comm_ring.to_comm_semiring [instance] [s : comm_ring A] : comm_semiring A :=
comm_semiring.mk has_add.add add_assoc !has_zero.zero add_left_id add_right_id add_comm
has_mul.mul mul_assoc !has_one.one mul_left_id mul_right_id distrib_left distrib_right
mul_zero_left mul_zero_right zero_ne_one mul_comm
section
variables [s : comm_ring A] (a b c d e : A)
include s
-- TODO: wait for the simplifier
theorem square_minus_square_eq : a * a - b * b = (a + b) * (a - b) := sorry
theorem square_minus_one_eq : a * a - 1 = (a + 1) * (a - 1) :=
!mul_right_id ▸ !square_minus_square_eq
end
structure comm_ring_dvd [class] (A : Type) extends comm_ring A, has_dvd A
definition comm_ring_dvd.to_comm_semiring_dvd [instance] [s : comm_ring_dvd A] : comm_semiring_dvd A :=
comm_semiring_dvd.mk has_add.add add_assoc !has_zero.zero add_left_id add_right_id add_comm
has_mul.mul mul_assoc !has_one.one mul_left_id mul_right_id distrib_left distrib_right
mul_zero_left mul_zero_right zero_ne_one mul_comm dvd (@dvd_intro A s) (@dvd_imp_exists A s)
section
variables [s : comm_ring_dvd A] (a b c d e : A)
include s
theorem dvd_neg_iff : a | -b ↔ a | b :=
iff.intro
(assume H : a | -b,
dvd_elim H
(take c, assume H' : a * c = -b,
dvd_intro
(calc
a * -c = -(a * c) : neg_mul_right
... = -(-b) : H'
... = b : neg_neg)))
(assume H : a | b,
dvd_elim H
(take c, assume H' : a * c = b,
dvd_intro
(calc
a * -c = -(a * c) : neg_mul_right
... = -b : H')))
theorem neg_dvd_iff : -a | b ↔ a | b :=
iff.intro
(assume H : -a | b,
dvd_elim H
(take c, assume H' : -a * c = b,
dvd_intro
(calc
a * -c = -a * c : neg_mul_comm
... = b : H')))
(assume H : a | b,
dvd_elim H
(take c, assume H' : a * c = b,
dvd_intro
(calc
-a * -c = a * c : neg_mul_neg
... = b : H')))
theorem dvd_diff (H₁ : a | b) (H₂ : a | c) : a | (b - c) :=
dvd_add H₁ (iff.elim_right !dvd_neg_iff H₂)
end
/- integral domains -/
-- TODO: some properties here may extend to cancellative semirings. It is worth the effort?
structure no_zero_divisors [class] (A : Type) extends has_mul A, has_zero A :=
(eq_zero_or_eq_zero_of_mul_eq_zero : ∀a b, mul a b = zero → a = zero b = zero)
theorem eq_zero_or_eq_zero_of_mul_eq_zero {A : Type} [s : no_zero_divisors A] {a b : A} (H : a * b = 0) :
a = 0 b = 0 := !no_zero_divisors.eq_zero_or_eq_zero_of_mul_eq_zero H
structure integral_domain [class] (A : Type) extends comm_ring_dvd A, no_zero_divisors A
section
variables [s : integral_domain A] (a b c d e : A)
include s
theorem mul_ne_zero_of_ne_zero_ne_zero {a b : A} (H1 : a ≠ 0) (H2 : b ≠ 0) : a * b ≠ 0 :=
assume H : a * b = 0,
or.elim (eq_zero_or_eq_zero_of_mul_eq_zero H) (assume H3, H1 H3) (assume H4, H2 H4)
theorem mul.cancel_right {a b c : A} (Ha : a ≠ 0) (H : b * a = c * a) : b = c :=
have H1 : b * a - c * a = 0, from iff.mp !eq_iff_minus_eq_zero H,
have H2 : (b - c) * a = 0, from eq.trans !minus_distrib_right H1,
have H3 : b - c = 0, from or.resolve_left (eq_zero_or_eq_zero_of_mul_eq_zero H2) Ha,
iff.elim_right !eq_iff_minus_eq_zero H3
theorem mul.cancel_left {a b c : A} (Ha : a ≠ 0) (H : a * b = a * c) : b = c :=
have H1 : a * b - a * c = 0, from iff.mp !eq_iff_minus_eq_zero H,
have H2 : a * (b - c) = 0, from eq.trans !minus_distrib_left H1,
have H3 : b - c = 0, from or.resolve_right (eq_zero_or_eq_zero_of_mul_eq_zero H2) Ha,
iff.elim_right !eq_iff_minus_eq_zero H3
-- TODO: do we want the iff versions?
-- TODO: wait for simplifier
theorem square_eq_square_iff (a b : A) : a * a = b * b ↔ a = b a = -b := sorry
theorem square_eq_one_iff (a : A) : a * a = 1 ↔ a = 1 a = -1 := sorry
-- TODO: c - b * c → c = 0 b = 1 and variants
theorem dvd_of_mul_dvd_mul_left {a b c : A} (Ha : a ≠ 0) (Hdvd : a * b | a * c) : b | c :=
dvd_elim Hdvd
(take d,
assume H : a * b * d = a * c,
have H1 : b * d = c, from mul.cancel_left Ha (!mul_assoc ▸ H),
dvd_intro H1)
theorem dvd_of_mul_dvd_mul_right {a b c : A} (Ha : a ≠ 0) (Hdvd : b * a | c * a) : b | c :=
dvd_elim Hdvd
(take d,
assume H : b * a * d = c * a,
have H1 : b * d * a = c * a, from eq.trans !mul_right_comm H,
have H2 : b * d = c, from mul.cancel_right Ha H1,
dvd_intro H2)
end
end algebra