lean2/src/builtin/kernel.lean
Leonardo de Moura e9dada5e14 refactor(builtin/kernel): use standard definition for 'or' and 'and'
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2014-02-17 12:05:34 -08:00

1083 lines
45 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Leonardo de Moura
import macros tactic
universe U ≥ 1
definition TypeU := (Type U)
-- create default rewrite rule set
(* mk_rewrite_rule_set() *)
variable Bool : Type
-- Reflexivity for heterogeneous equality
-- We use universe U+1 in heterogeneous equality axioms because we want to be able
-- to state the equality between A and B of (Type U)
axiom hrefl {A : (Type U+1)} (a : A) : a == a
-- Homogeneous equality
definition eq {A : (Type U)} (a b : A) := a == b
infix 50 = : eq
theorem refl {A : (Type U)} (a : A) : a = a
:= hrefl a
theorem heq_eq {A : (Type U)} (a b : A) : (a == b) = (a = b)
:= refl (a == b)
definition true : Bool
:= (λ x : Bool, x) = (λ x : Bool, x)
theorem trivial : true
:= refl (λ x : Bool, x)
set_opaque true true
definition false : Bool
:= ∀ x : Bool, x
alias : true
alias ⊥ : false
definition not (a : Bool) := a → false
notation 40 ¬ _ : not
definition or (a b : Bool)
:= ∀ c : Bool, (a → c) → (b → c) → c
infixr 30 || : or
infixr 30 \/ : or
infixr 30 : or
definition and (a b : Bool)
:= ∀ c : Bool, (a → b → c) → c
infixr 35 && : and
infixr 35 /\ : and
infixr 35 ∧ : and
definition implies (a b : Bool) := a → b
definition neq {A : (Type U)} (a b : A) := ¬ (a = b)
infix 50 ≠ : neq
theorem a_neq_a_elim {A : (Type U)} {a : A} (H : a ≠ a) : false
:= H (refl a)
definition iff (a b : Bool) := a = b
infixr 25 <-> : iff
infixr 25 ↔ : iff
theorem not_intro {a : Bool} (H : a → false) : ¬ a
:= H
theorem absurd {a : Bool} (H1 : a) (H2 : ¬ a) : false
:= H2 H1
-- The Lean parser has special treatment for the constant exists.
-- It allows us to write
-- exists x y : A, P x y and ∃ x y : A, P x y
-- as syntax sugar for
-- exists A (fun x : A, exists A (fun y : A, P x y))
-- That is, it treats the exists as an extra binder such as fun and forall.
-- It also provides an alias (Exists) that should be used when we
-- want to treat exists as a constant.
definition Exists (A : (Type U)) (P : A → Bool)
:= ¬ (∀ x, ¬ (P x))
definition exists_unique {A : (Type U)} (p : A → Bool)
:= ∃ x, p x ∧ ∀ y, y ≠ x → ¬ p y
theorem false_elim (a : Bool) (H : false) : a
:= H a
set_opaque false true
theorem mt {a b : Bool} (H1 : a → b) (H2 : ¬ b) : ¬ a
:= assume Ha : a, absurd (H1 Ha) H2
theorem contrapos {a b : Bool} (H : a → b) : ¬ b → ¬ a
:= assume Hnb : ¬ b, mt H Hnb
theorem absurd_elim {a : Bool} (b : Bool) (H1 : a) (H2 : ¬ a) : b
:= false_elim b (absurd H1 H2)
theorem or_introl {a : Bool} (H : a) (b : Bool) : a b
:= take c : Bool,
assume (H1 : a → c) (H2 : b → c),
H1 H
theorem or_intror {b : Bool} (a : Bool) (H : b) : a b
:= take c : Bool,
assume (H1 : a → c) (H2 : b → c),
H2 H
theorem or_elim {a b c : Bool} (H1 : a b) (H2 : a → c) (H3 : b → c) : c
:= H1 c H2 H3
theorem resolve1 {a b : Bool} (H1 : a b) (H2 : ¬ a) : b
:= H1 b (assume Ha : a, absurd_elim b Ha H2) (assume Hb : b, Hb)
theorem resolve2 {a b : Bool} (H1 : a b) (H2 : ¬ b) : a
:= H1 a (assume Ha : a, Ha) (assume Hb : b, absurd_elim a Hb H2)
theorem or_flip {a b : Bool} (H : a b) : b a
:= take c : Bool,
assume (H1 : b → c) (H2 : a → c),
H c H2 H1
theorem and_intro {a b : Bool} (H1 : a) (H2 : b) : a ∧ b
:= take c : Bool,
assume H : a → b → c,
H H1 H2
theorem and_eliml {a b : Bool} (H : a ∧ b) : a
:= H a (assume (Ha : a) (Hb : b), Ha)
theorem and_elimr {a b : Bool} (H : a ∧ b) : b
:= H b (assume (Ha : a) (Hb : b), Hb)
axiom subst {A : (Type U)} {a b : A} {P : A → Bool} (H1 : P a) (H2 : a = b) : P b
-- Alias for subst where we provide P explicitly, but keep A,a,b implicit
theorem substp {A : (Type U)} {a b : A} (P : A → Bool) (H1 : P a) (H2 : a = b) : P b
:= subst H1 H2
theorem symm {A : (Type U)} {a b : A} (H : a = b) : b = a
:= subst (refl a) H
theorem trans {A : (Type U)} {a b c : A} (H1 : a = b) (H2 : b = c) : a = c
:= subst H1 H2
theorem hcongr1 {A : (Type U)} {B : A → (Type U)} {f g : ∀ x, B x} (H : f = g) (a : A) : f a = g a
:= substp (fun h, f a = h a) (refl (f a)) H
theorem congr1 {A B : (Type U)} {f g : A → B} (H : f = g) (a : A) : f a = g a
:= hcongr1 H a
theorem congr2 {A B : (Type U)} {a b : A} (f : A → B) (H : a = b) : f a = f b
:= substp (fun x : A, f a = f x) (refl (f a)) H
theorem congr {A B : (Type U)} {f g : A → B} {a b : A} (H1 : f = g) (H2 : a = b) : f a = g b
:= subst (congr2 f H2) (congr1 H1 b)
theorem true_ne_false : ¬ true = false
:= assume H : true = false,
subst trivial H
theorem absurd_not_true (H : ¬ true) : false
:= absurd trivial H
theorem not_false_trivial : ¬ false
:= assume H : false, H
-- "equality modus pones"
theorem eqmp {a b : Bool} (H1 : a = b) (H2 : a) : b
:= subst H2 H1
infixl 100 <| : eqmp
infixl 100 ◂ : eqmp
theorem eqmpr {a b : Bool} (H1 : a = b) (H2 : b) : a
:= (symm H1) ◂ H2
theorem imp_trans {a b c : Bool} (H1 : a → b) (H2 : b → c) : a → c
:= assume Ha, H2 (H1 Ha)
theorem imp_eq_trans {a b c : Bool} (H1 : a → b) (H2 : b = c) : a → c
:= assume Ha, H2 ◂ (H1 Ha)
theorem eq_imp_trans {a b c : Bool} (H1 : a = b) (H2 : b → c) : a → c
:= assume Ha, H2 (H1 ◂ Ha)
theorem to_eq {A : (Type U)} {a b : A} (H : a == b) : a = b
:= (heq_eq a b) ◂ H
theorem to_heq {A : (Type U)} {a b : A} (H : a = b) : a == b
:= (symm (heq_eq a b)) ◂ H
theorem iff_eliml {a b : Bool} (H : a ↔ b) : a → b
:= (λ Ha : a, eqmp H Ha)
theorem iff_elimr {a b : Bool} (H : a ↔ b) : b → a
:= (λ Hb : b, eqmpr H Hb)
theorem ne_symm {A : (Type U)} {a b : A} (H : a ≠ b) : b ≠ a
:= assume H1 : b = a, H (symm H1)
theorem eq_ne_trans {A : (Type U)} {a b c : A} (H1 : a = b) (H2 : b ≠ c) : a ≠ c
:= subst H2 (symm H1)
theorem ne_eq_trans {A : (Type U)} {a b c : A} (H1 : a ≠ b) (H2 : b = c) : a ≠ c
:= subst H1 H2
theorem eqt_elim {a : Bool} (H : a = true) : a
:= (symm H) ◂ trivial
theorem eqf_elim {a : Bool} (H : a = false) : ¬ a
:= not_intro (λ Ha : a, H ◂ Ha)
theorem heqt_elim {a : Bool} (H : a == true) : a
:= eqt_elim (to_eq H)
axiom boolcomplete (a : Bool) : a = true a = false
theorem case (P : Bool → Bool) (H1 : P true) (H2 : P false) (a : Bool) : P a
:= or_elim (boolcomplete a)
(assume Ht : a = true, subst H1 (symm Ht))
(assume Hf : a = false, subst H2 (symm Hf))
theorem em (a : Bool) : a ¬ a
:= or_elim (boolcomplete a)
(assume Ht : a = true, or_introl (eqt_elim Ht) (¬ a))
(assume Hf : a = false, or_intror a (eqf_elim Hf))
theorem boolcomplete_swapped (a : Bool) : a = false a = true
:= case (λ x, x = false x = true)
(or_intror (true = false) (refl true))
(or_introl (refl false) (false = true))
a
theorem not_true : (¬ true) = false
:= let aux : ¬ (¬ true) = true
:= assume H : (¬ true) = true,
absurd_not_true (subst trivial (symm H))
in resolve1 (boolcomplete (¬ true)) aux
theorem not_false : (¬ false) = true
:= let aux : ¬ (¬ false) = false
:= assume H : (¬ false) = false,
subst not_false_trivial H
in resolve1 (boolcomplete_swapped (¬ false)) aux
add_rewrite not_true not_false
theorem not_not_eq (a : Bool) : (¬ ¬ a) = a
:= case (λ x, (¬ ¬ x) = x)
(calc (¬ ¬ true) = (¬ false) : { not_true }
... = true : not_false)
(calc (¬ ¬ false) = (¬ true) : { not_false }
... = false : not_true)
a
add_rewrite not_not_eq
theorem not_neq {A : (Type U)} (a b : A) : ¬ (a ≠ b) ↔ a = b
:= not_not_eq (a = b)
add_rewrite not_neq
theorem not_neq_elim {A : (Type U)} {a b : A} (H : ¬ (a ≠ b)) : a = b
:= (not_neq a b) ◂ H
theorem not_not_elim {a : Bool} (H : ¬ ¬ a) : a
:= (not_not_eq a) ◂ H
theorem not_imp_eliml {a b : Bool} (Hnab : ¬ (a → b)) : a
:= not_not_elim
(show ¬ ¬ a,
from assume Hna : ¬ a, absurd (assume Ha : a, absurd_elim b Ha Hna)
Hnab)
theorem not_imp_elimr {a b : Bool} (H : ¬ (a → b)) : ¬ b
:= assume Hb : b, absurd (assume Ha : a, Hb)
H
theorem boolext {a b : Bool} (Hab : a → b) (Hba : b → a) : a = b
:= or_elim (boolcomplete a)
(λ Hat : a = true, or_elim (boolcomplete b)
(λ Hbt : b = true, trans Hat (symm Hbt))
(λ Hbf : b = false, false_elim (a = b) (subst (Hab (eqt_elim Hat)) Hbf)))
(λ Haf : a = false, or_elim (boolcomplete b)
(λ Hbt : b = true, false_elim (a = b) (subst (Hba (eqt_elim Hbt)) Haf))
(λ Hbf : b = false, trans Haf (symm Hbf)))
-- Another name for boolext
theorem iff_intro {a b : Bool} (Hab : a → b) (Hba : b → a) : a ↔ b
:= boolext Hab Hba
theorem eqt_intro {a : Bool} (H : a) : a = true
:= boolext (assume H1 : a, trivial)
(assume H2 : true, H)
theorem eqf_intro {a : Bool} (H : ¬ a) : a = false
:= boolext (assume H1 : a, absurd H1 H)
(assume H2 : false, false_elim a H2)
theorem by_contradiction {a : Bool} (H : ¬ a → false) : a
:= or_elim (em a) (λ H1 : a, H1) (λ H1 : ¬ a, false_elim a (H H1))
theorem a_neq_a {A : (Type U)} (a : A) : (a ≠ a) ↔ false
:= boolext (assume H, a_neq_a_elim H)
(assume H, false_elim (a ≠ a) H)
theorem eq_id {A : (Type U)} (a : A) : (a = a) ↔ true
:= eqt_intro (refl a)
theorem iff_id (a : Bool) : (a ↔ a) ↔ true
:= eqt_intro (refl a)
theorem heq_id (A : (Type U+1)) (a : A) : (a == a) ↔ true
:= eqt_intro (hrefl a)
theorem neq_elim {A : (Type U)} {a b : A} (H : a ≠ b) : a = b ↔ false
:= eqf_intro H
theorem neq_to_not_eq {A : (Type U)} {a b : A} : a ≠ b ↔ ¬ a = b
:= refl (a ≠ b)
add_rewrite eq_id iff_id neq_to_not_eq
-- Remark: ordered rewriting + assoc + comm + left_comm sorts a term lexicographically
theorem left_comm {A : (Type U)} {R : A -> A -> A} (comm : ∀ x y, R x y = R y x) (assoc : ∀ x y z, R (R x y) z = R x (R y z)) :
∀ x y z, R x (R y z) = R y (R x z)
:= take x y z, calc R x (R y z) = R (R x y) z : symm (assoc x y z)
... = R (R y x) z : { comm x y }
... = R y (R x z) : assoc y x z
theorem or_comm (a b : Bool) : (a b) = (b a)
:= boolext (assume H, or_elim H (λ H1, or_intror b H1) (λ H2, or_introl H2 a))
(assume H, or_elim H (λ H1, or_intror a H1) (λ H2, or_introl H2 b))
theorem or_assoc (a b c : Bool) : (a b) c ↔ a (b c)
:= boolext (assume H : (a b) c,
or_elim H (λ H1 : a b, or_elim H1 (λ Ha : a, or_introl Ha (b c))
(λ Hb : b, or_intror a (or_introl Hb c)))
(λ Hc : c, or_intror a (or_intror b Hc)))
(assume H : a (b c),
or_elim H (λ Ha : a, (or_introl (or_introl Ha b) c))
(λ H1 : b c, or_elim H1 (λ Hb : b, or_introl (or_intror a Hb) c)
(λ Hc : c, or_intror (a b) Hc)))
theorem or_id (a : Bool) : a a ↔ a
:= boolext (assume H, or_elim H (λ H1, H1) (λ H2, H2))
(assume H, or_introl H a)
theorem or_falsel (a : Bool) : a false ↔ a
:= boolext (assume H, or_elim H (λ H1, H1) (λ H2, false_elim a H2))
(assume H, or_introl H false)
theorem or_falser (a : Bool) : false a ↔ a
:= trans (or_comm false a) (or_falsel a)
theorem or_truel (a : Bool) : true a ↔ true
:= boolext (assume H : true a, trivial)
(assume H : true, or_introl trivial a)
theorem or_truer (a : Bool) : a true ↔ true
:= trans (or_comm a true) (or_truel a)
theorem or_tauto (a : Bool) : a ¬ a ↔ true
:= eqt_intro (em a)
theorem or_left_comm (a b c : Bool) : a (b c) ↔ b (a c)
:= left_comm or_comm or_assoc a b c
add_rewrite or_comm or_assoc or_id or_falsel or_falser or_truel or_truer or_tauto or_left_comm
theorem and_comm (a b : Bool) : a ∧ b ↔ b ∧ a
:= boolext (assume H, and_intro (and_elimr H) (and_eliml H))
(assume H, and_intro (and_elimr H) (and_eliml H))
theorem and_id (a : Bool) : a ∧ a ↔ a
:= boolext (assume H, and_eliml H)
(assume H, and_intro H H)
theorem and_assoc (a b c : Bool) : (a ∧ b) ∧ c ↔ a ∧ (b ∧ c)
:= boolext (assume H, and_intro (and_eliml (and_eliml H)) (and_intro (and_elimr (and_eliml H)) (and_elimr H)))
(assume H, and_intro (and_intro (and_eliml H) (and_eliml (and_elimr H))) (and_elimr (and_elimr H)))
theorem and_truer (a : Bool) : a ∧ true ↔ a
:= boolext (assume H : a ∧ true, and_eliml H)
(assume H : a, and_intro H trivial)
theorem and_truel (a : Bool) : true ∧ a ↔ a
:= trans (and_comm true a) (and_truer a)
theorem and_falsel (a : Bool) : a ∧ false ↔ false
:= boolext (assume H, and_elimr H)
(assume H, false_elim (a ∧ false) H)
theorem and_falser (a : Bool) : false ∧ a ↔ false
:= trans (and_comm false a) (and_falsel a)
theorem and_absurd (a : Bool) : a ∧ ¬ a ↔ false
:= boolext (assume H, absurd (and_eliml H) (and_elimr H))
(assume H, false_elim (a ∧ ¬ a) H)
theorem and_left_comm (a b c : Bool) : a ∧ (b ∧ c) ↔ b ∧ (a ∧ c)
:= left_comm and_comm and_assoc a b c
add_rewrite and_comm and_assoc and_id and_falsel and_falser and_truel and_truer and_absurd and_left_comm
theorem imp_truer (a : Bool) : (a → true) ↔ true
:= boolext (assume H, trivial)
(assume H Ha, trivial)
theorem imp_truel (a : Bool) : (true → a) ↔ a
:= boolext (assume H : true → a, H trivial)
(assume Ha H, Ha)
theorem imp_falser (a : Bool) : (a → false) ↔ ¬ a
:= refl _
theorem imp_falsel (a : Bool) : (false → a) ↔ true
:= boolext (assume H, trivial)
(assume H Hf, false_elim a Hf)
theorem imp_id (a : Bool) : (a → a) ↔ true
:= eqt_intro (λ H : a, H)
add_rewrite imp_truer imp_truel imp_falser imp_falsel imp_id
theorem imp_or (a b : Bool) : (a → b) ↔ ¬ a b
:= boolext
(assume H : a → b,
(or_elim (em a)
(λ Ha : a, or_intror (¬ a) (H Ha))
(λ Hna : ¬ a, or_introl Hna b)))
(assume H : ¬ a b,
assume Ha : a,
resolve1 H ((symm (not_not_eq a)) ◂ Ha))
theorem or_imp (a b : Bool) : a b ↔ (¬ a → b)
:= boolext
(assume H : a b,
(or_elim H
(assume (Ha : a) (Hna : ¬ a), absurd_elim b Ha Hna)
(assume (Hb : b) (Hna : ¬ a), Hb)))
(assume H : ¬ a → b,
(or_elim (em a)
(assume Ha : a, or_introl Ha b)
(assume Hna : ¬ a, or_intror a (H Hna))))
theorem not_congr {a b : Bool} (H : a ↔ b) : ¬ a ↔ ¬ b
:= congr2 not H
-- Recall that exists is defined as ¬ ∀ x : A, ¬ P x
theorem exists_elim {A : (Type U)} {P : A → Bool} {B : Bool} (H1 : Exists A P) (H2 : ∀ (a : A) (H : P a), B) : B
:= by_contradiction (assume R : ¬ B,
absurd (take a : A, mt (assume H : P a, H2 a H) R)
H1)
theorem exists_intro {A : (Type U)} {P : A → Bool} (a : A) (H : P a) : Exists A P
:= assume H1 : (∀ x : A, ¬ P x),
absurd H (H1 a)
theorem not_exists (A : (Type U)) (P : A → Bool) : ¬ (∃ x : A, P x) ↔ (∀ x : A, ¬ P x)
:= calc (¬ ∃ x : A, P x) = ¬ ¬ ∀ x : A, ¬ P x : refl (¬ ∃ x : A, P x)
... = ∀ x : A, ¬ P x : not_not_eq (∀ x : A, ¬ P x)
theorem not_exists_elim {A : (Type U)} {P : A → Bool} (H : ¬ ∃ x : A, P x) : ∀ x : A, ¬ P x
:= (not_exists A P) ◂ H
theorem exists_unfold1 {A : (Type U)} {P : A → Bool} (a : A) (H : ∃ x : A, P x) : P a (∃ x : A, x ≠ a ∧ P x)
:= exists_elim H
(λ (w : A) (H1 : P w),
or_elim (em (w = a))
(λ Heq : w = a, or_introl (subst H1 Heq) (∃ x : A, x ≠ a ∧ P x))
(λ Hne : w ≠ a, or_intror (P a) (exists_intro w (and_intro Hne H1))))
theorem exists_unfold2 {A : (Type U)} {P : A → Bool} (a : A) (H : P a (∃ x : A, x ≠ a ∧ P x)) : ∃ x : A, P x
:= or_elim H
(λ H1 : P a, exists_intro a H1)
(λ H2 : (∃ x : A, x ≠ a ∧ P x),
exists_elim H2
(λ (w : A) (Hw : w ≠ a ∧ P w),
exists_intro w (and_elimr Hw)))
theorem exists_unfold {A : (Type U)} (P : A → Bool) (a : A) : (∃ x : A, P x) ↔ (P a (∃ x : A, x ≠ a ∧ P x))
:= boolext (assume H : (∃ x : A, P x), exists_unfold1 a H)
(assume H : (P a (∃ x : A, x ≠ a ∧ P x)), exists_unfold2 a H)
definition inhabited (A : (Type U))
:= ∃ x : A, true
-- If we have an element of type A, then A is inhabited
theorem inhabited_intro {A : (Type U)} (a : A) : inhabited A
:= assume H : (∀ x, ¬ true), absurd_not_true (H a)
theorem inhabited_elim {A : (Type U)} (H1 : inhabited A) {B : Bool} (H2 : A → B) : B
:= obtain (w : A) (Hw : true), from H1,
H2 w
theorem inhabited_ex_intro {A : (Type U)} {P : A → Bool} (H : ∃ x, P x) : inhabited A
:= obtain (w : A) (Hw : P w), from H,
exists_intro w trivial
-- If a function space is non-empty, then for every 'a' in the domain, the range (B a) is not empty
theorem inhabited_range {A : (Type U)} {B : A → (Type U)} (H : inhabited (∀ x, B x)) (a : A) : inhabited (B a)
:= by_contradiction (assume N : ¬ inhabited (B a),
let s1 : ¬ ∃ x : B a, true := N,
s2 : ∀ x : B a, false := take x : B a, absurd_not_true (not_exists_elim s1 x),
s3 : ∃ y : (∀ x, B x), true := H
in obtain (w : (∀ x, B x)) (Hw : true), from s3,
let s4 : B a := w a
in s2 s4)
theorem exists_rem {A : (Type U)} (H : inhabited A) (p : Bool) : (∃ x : A, p) ↔ p
:= iff_intro
(assume Hl : (∃ x : A, p),
obtain (w : A) (Hw : p), from Hl,
Hw)
(assume Hr : p,
inhabited_elim H (λ w, exists_intro w Hr))
theorem forall_rem {A : (Type U)} (H : inhabited A) (p : Bool) : (∀ x : A, p) ↔ p
:= iff_intro
(assume Hl : (∀ x : A, p),
inhabited_elim H (λ w, Hl w))
(assume Hr : p,
take x, Hr)
theorem not_and (a b : Bool) : ¬ (a ∧ b) ↔ ¬ a ¬ b
:= boolext (assume H, or_elim (em a)
(assume Ha, or_elim (em b)
(assume Hb, absurd_elim (¬ a ¬ b) (and_intro Ha Hb) H)
(assume Hnb, or_intror (¬ a) Hnb))
(assume Hna, or_introl Hna (¬ b)))
(assume (H : ¬ a ¬ b) (N : a ∧ b),
or_elim H
(assume Hna, absurd (and_eliml N) Hna)
(assume Hnb, absurd (and_elimr N) Hnb))
theorem not_and_elim {a b : Bool} (H : ¬ (a ∧ b)) : ¬ a ¬ b
:= (not_and a b) ◂ H
theorem not_or (a b : Bool) : ¬ (a b) ↔ ¬ a ∧ ¬ b
:= boolext (assume H, or_elim (em a)
(assume Ha, absurd_elim (¬ a ∧ ¬ b) (or_introl Ha b) H)
(assume Hna, or_elim (em b)
(assume Hb, absurd_elim (¬ a ∧ ¬ b) (or_intror a Hb) H)
(assume Hnb, and_intro Hna Hnb)))
(assume (H : ¬ a ∧ ¬ b) (N : a b),
or_elim N
(assume Ha, absurd Ha (and_eliml H))
(assume Hb, absurd Hb (and_elimr H)))
theorem not_or_elim {a b : Bool} (H : ¬ (a b)) : ¬ a ∧ ¬ b
:= (not_or a b) ◂ H
theorem not_implies (a b : Bool) : ¬ (a → b) ↔ a ∧ ¬ b
:= calc (¬ (a → b)) = ¬ (¬ a b) : { imp_or a b }
... = ¬ ¬ a ∧ ¬ b : not_or (¬ a) b
... = a ∧ ¬ b : congr2 (λ x, x ∧ ¬ b) (not_not_eq a)
theorem and_imp (a b : Bool) : a ∧ b ↔ ¬ (a → ¬ b)
:= have H1 : a ∧ ¬ ¬ b ↔ ¬ (a → ¬ b),
from symm (not_implies a (¬ b)),
subst H1 (not_not_eq b)
theorem not_implies_elim {a b : Bool} (H : ¬ (a → b)) : a ∧ ¬ b
:= (not_implies a b) ◂ H
theorem a_eq_not_a (a : Bool) : (a = ¬ a) ↔ false
:= boolext (λ H, or_elim (em a)
(λ Ha, absurd Ha (subst Ha H))
(λ Hna, absurd (subst Hna (symm H)) Hna))
(λ H, false_elim (a = ¬ a) H)
theorem a_iff_not_a (a : Bool) : (a ↔ ¬ a) ↔ false
:= a_eq_not_a a
theorem true_eq_false : (true = false) ↔ false
:= subst (a_eq_not_a true) not_true
theorem true_iff_false : (true ↔ false) ↔ false
:= true_eq_false
theorem false_eq_true : (false = true) ↔ false
:= subst (a_eq_not_a false) not_false
theorem false_iff_true : (false ↔ true) ↔ false
:= false_eq_true
theorem a_iff_true (a : Bool) : (a ↔ true) ↔ a
:= boolext (λ H, eqt_elim H)
(λ H, eqt_intro H)
theorem a_iff_false (a : Bool) : (a ↔ false) ↔ ¬ a
:= boolext (λ H, eqf_elim H)
(λ H, eqf_intro H)
add_rewrite a_eq_not_a a_iff_not_a true_eq_false true_iff_false false_eq_true false_iff_true a_iff_true a_iff_false
theorem not_iff (a b : Bool) : ¬ (a ↔ b) ↔ (¬ a ↔ b)
:= or_elim (em b)
(λ Hb, calc (¬ (a ↔ b)) = (¬ (a ↔ true)) : { eqt_intro Hb }
... = ¬ a : { a_iff_true a }
... = ¬ a ↔ true : { symm (a_iff_true (¬ a)) }
... = ¬ a ↔ b : { symm (eqt_intro Hb) })
(λ Hnb, calc (¬ (a ↔ b)) = (¬ (a ↔ false)) : { eqf_intro Hnb }
... = ¬ ¬ a : { a_iff_false a }
... = ¬ a ↔ false : { symm (a_iff_false (¬ a)) }
... = ¬ a ↔ b : { symm (eqf_intro Hnb) })
theorem not_iff_elim {a b : Bool} (H : ¬ (a ↔ b)) : (¬ a) ↔ b
:= (not_iff a b) ◂ H
-- Congruence theorems for contextual simplification
-- Simplify a → b, by first simplifying a to c using the fact that ¬ b is true, and then
-- b to d using the fact that c is true
theorem imp_congrr {a b c d : Bool} (H_ac : ∀ (H_nb : ¬ b), a = c) (H_bd : ∀ (H_c : c), b = d) : (a → b) = (c → d)
:= or_elim (em b)
(λ H_b : b,
or_elim (em c)
(λ H_c : c,
calc (a → b) = (a → true) : { eqt_intro H_b }
... = true : imp_truer a
... = (c → true) : symm (imp_truer c)
... = (c → b) : { symm (eqt_intro H_b) }
... = (c → d) : { H_bd H_c })
(λ H_nc : ¬ c,
calc (a → b) = (a → true) : { eqt_intro H_b }
... = true : imp_truer a
... = (false → d) : symm (imp_falsel d)
... = (c → d) : { symm (eqf_intro H_nc) }))
(λ H_nb : ¬ b,
or_elim (em c)
(λ H_c : c,
calc (a → b) = (c → b) : { H_ac H_nb }
... = (c → d) : { H_bd H_c })
(λ H_nc : ¬ c,
calc (a → b) = (c → b) : { H_ac H_nb }
... = (false → b) : { eqf_intro H_nc }
... = true : imp_falsel b
... = (false → d) : symm (imp_falsel d)
... = (c → d) : { symm (eqf_intro H_nc) }))
-- Simplify a → b, by first simplifying b to d using the fact that a is true, and then
-- b to d using the fact that ¬ d is true.
-- This kind of congruence seems to be useful in very rare cases.
theorem imp_congrl {a b c d : Bool} (H_bd : ∀ (H_a : a), b = d) (H_ac : ∀ (H_nd : ¬ d), a = c) : (a → b) = (c → d)
:= or_elim (em a)
(λ H_a : a,
or_elim (em d)
(λ H_d : d,
calc (a → b) = (a → d) : { H_bd H_a }
... = (a → true) : { eqt_intro H_d }
... = true : imp_truer a
... = (c → true) : symm (imp_truer c)
... = (c → d) : { symm (eqt_intro H_d) })
(λ H_nd : ¬ d,
calc (a → b) = (c → b) : { H_ac H_nd }
... = (c → d) : { H_bd H_a }))
(λ H_na : ¬ a,
or_elim (em d)
(λ H_d : d,
calc (a → b) = (false → b) : { eqf_intro H_na }
... = true : imp_falsel b
... = (c → true) : symm (imp_truer c)
... = (c → d) : { symm (eqt_intro H_d) })
(λ H_nd : ¬ d,
calc (a → b) = (false → b) : { eqf_intro H_na }
... = true : imp_falsel b
... = (false → d) : symm (imp_falsel d)
... = (a → d) : { symm (eqf_intro H_na) }
... = (c → d) : { H_ac H_nd }))
-- (Common case) simplify a to c, and then b to d using the fact that c is true
theorem imp_congr {a b c d : Bool} (H_ac : a = c) (H_bd : ∀ (H_c : c), b = d) : (a → b) = (c → d)
:= imp_congrr (λ H, H_ac) H_bd
theorem or_congrr {a b c d : Bool} (H_ac : ∀ (H_nb : ¬ b), a = c) (H_bd : ∀ (H_nc : ¬ c), b = d) : a b ↔ c d
:= have H1 : (¬ a → b) ↔ (¬ c → d),
from imp_congrr (λ H_nb : ¬ b, congr2 not (H_ac H_nb)) H_bd,
calc (a b) = (¬ a → b) : or_imp _ _
... = (¬ c → d) : H1
... = c d : symm (or_imp _ _)
theorem or_congrl {a b c d : Bool} (H_bd : ∀ (H_na : ¬ a), b = d) (H_ac : ∀ (H_nd : ¬ d), a = c) : a b ↔ c d
:= have H1 : (¬ a → b) ↔ (¬ c → d),
from imp_congrl H_bd (λ H_nd : ¬ d, congr2 not (H_ac H_nd)),
calc (a b) = (¬ a → b) : or_imp _ _
... = (¬ c → d) : H1
... = c d : symm (or_imp _ _)
-- (Common case) simplify a to c, and then b to d using the fact that ¬ c is true
theorem or_congr {a b c d : Bool} (H_ac : a = c) (H_bd : ∀ (H_nc : ¬ c), b = d) : a b ↔ c d
:= or_congrr (λ H, H_ac) H_bd
theorem and_congrr {a b c d : Bool} (H_ac : ∀ (H_b : b), a = c) (H_bd : ∀ (H_c : c), b = d) : a ∧ b ↔ c ∧ d
:= have H1 : ¬ (a → ¬ b) ↔ ¬ (c → ¬ d),
from congr2 not (imp_congrr (λ (H_nnb : ¬ ¬ b), H_ac (not_not_elim H_nnb)) (λ H_c : c, congr2 not (H_bd H_c))),
calc (a ∧ b) = ¬ (a → ¬ b) : and_imp _ _
... = ¬ (c → ¬ d) : H1
... = c ∧ d : symm (and_imp _ _)
theorem and_congrl {a b c d : Bool} (H_bd : ∀ (H_a : a), b = d) (H_ac : ∀ (H_d : d), a = c) : a ∧ b ↔ c ∧ d
:= have H1 : ¬ (a → ¬ b) ↔ ¬ (c → ¬ d),
from congr2 not (imp_congrl (λ H_a : a, congr2 not (H_bd H_a)) (λ (H_nnd : ¬ ¬ d), H_ac (not_not_elim H_nnd))),
calc (a ∧ b) = ¬ (a → ¬ b) : and_imp _ _
... = ¬ (c → ¬ d) : H1
... = c ∧ d : symm (and_imp _ _)
-- (Common case) simplify a to c, and then b to d using the fact that c is true
theorem and_congr {a b c d : Bool} (H_ac : a = c) (H_bd : ∀ (H_c : c), b = d) : a ∧ b ↔ c ∧ d
:= and_congrr (λ H, H_ac) H_bd
theorem forall_or_distributer {A : (Type U)} (p : Bool) (φ : A → Bool) : (∀ x, p φ x) = (p ∀ x, φ x)
:= boolext
(assume H : (∀ x, p φ x),
or_elim (em p)
(λ Hp : p, or_introl Hp (∀ x, φ x))
(λ Hnp : ¬ p, or_intror p (take x,
resolve1 (H x) Hnp)))
(assume H : (p ∀ x, φ x),
take x,
or_elim H
(λ H1 : p, or_introl H1 (φ x))
(λ H2 : (∀ x, φ x), or_intror p (H2 x)))
theorem forall_or_distributel {A : Type} (p : Bool) (φ : A → Bool) : (∀ x, φ x p) = ((∀ x, φ x) p)
:= boolext
(assume H : (∀ x, φ x p),
or_elim (em p)
(λ Hp : p, or_intror (∀ x, φ x) Hp)
(λ Hnp : ¬ p, or_introl (take x, resolve2 (H x) Hnp) p))
(assume H : (∀ x, φ x) p,
take x,
or_elim H
(λ H1 : (∀ x, φ x), or_introl (H1 x) p)
(λ H2 : p, or_intror (φ x) H2))
theorem forall_and_distribute {A : (Type U)} (φ ψ : A → Bool) : (∀ x, φ x ∧ ψ x) ↔ (∀ x, φ x) ∧ (∀ x, ψ x)
:= boolext
(assume H : (∀ x, φ x ∧ ψ x),
and_intro (take x, and_eliml (H x)) (take x, and_elimr (H x)))
(assume H : (∀ x, φ x) ∧ (∀ x, ψ x),
take x, and_intro (and_eliml H x) (and_elimr H x))
theorem exists_and_distributer {A : (Type U)} (p : Bool) (φ : A → Bool) : (∃ x, p ∧ φ x) ↔ p ∧ ∃ x, φ x
:= boolext
(assume H : (∃ x, p ∧ φ x),
obtain (w : A) (Hw : p ∧ φ w), from H,
and_intro (and_eliml Hw) (exists_intro w (and_elimr Hw)))
(assume H : (p ∧ ∃ x, φ x),
obtain (w : A) (Hw : φ w), from (and_elimr H),
exists_intro w (and_intro (and_eliml H) Hw))
theorem exists_or_distribute {A : (Type U)} (φ ψ : A → Bool) : (∃ x, φ x ψ x) ↔ (∃ x, φ x) (∃ x, ψ x)
:= boolext
(assume H : (∃ x, φ x ψ x),
obtain (w : A) (Hw : φ w ψ w), from H,
or_elim Hw
(λ Hw1 : φ w, or_introl (exists_intro w Hw1) (∃ x, ψ x))
(λ Hw2 : ψ w, or_intror (∃ x, φ x) (exists_intro w Hw2)))
(assume H : (∃ x, φ x) (∃ x, ψ x),
or_elim H
(λ H1 : (∃ x, φ x),
obtain (w : A) (Hw : φ w), from H1,
exists_intro w (or_introl Hw (ψ w)))
(λ H2 : (∃ x, ψ x),
obtain (w : A) (Hw : ψ w), from H2,
exists_intro w (or_intror (φ w) Hw)))
theorem eq_exists_intro {A : (Type U)} {P Q : A → Bool} (H : ∀ x : A, P x ↔ Q x) : (∃ x : A, P x) ↔ (∃ x : A, Q x)
:= boolext
(assume Hex, obtain w Pw, from Hex, exists_intro w ((H w) ◂ Pw))
(assume Hex, obtain w Qw, from Hex, exists_intro w ((symm (H w)) ◂ Qw))
theorem not_forall (A : (Type U)) (P : A → Bool) : ¬ (∀ x : A, P x) ↔ (∃ x : A, ¬ P x)
:= boolext
(assume H, by_contradiction (assume N : ¬ (∃ x, ¬ P x),
absurd (take x, not_not_elim (not_exists_elim N x)) H))
(assume (H : ∃ x, ¬ P x) (N : ∀ x, P x),
obtain w Hw, from H,
absurd (N w) Hw)
theorem not_forall_elim {A : (Type U)} {P : A → Bool} (H : ¬ (∀ x : A, P x)) : ∃ x : A, ¬ P x
:= (not_forall A P) ◂ H
theorem exists_and_distributel {A : (Type U)} (p : Bool) (φ : A → Bool) : (∃ x, φ x ∧ p) ↔ (∃ x, φ x) ∧ p
:= calc (∃ x, φ x ∧ p) = (∃ x, p ∧ φ x) : eq_exists_intro (λ x, and_comm (φ x) p)
... = (p ∧ (∃ x, φ x)) : exists_and_distributer p φ
... = ((∃ x, φ x) ∧ p) : and_comm p (∃ x, φ x)
theorem exists_imp_distribute {A : (Type U)} (φ ψ : A → Bool) : (∃ x, φ x → ψ x) ↔ ((∀ x, φ x) → (∃ x, ψ x))
:= calc (∃ x, φ x → ψ x) = (∃ x, ¬ φ x ψ x) : eq_exists_intro (λ x, imp_or (φ x) (ψ x))
... = (∃ x, ¬ φ x) (∃ x, ψ x) : exists_or_distribute _ _
... = ¬ (∀ x, φ x) (∃ x, ψ x) : { symm (not_forall A φ) }
... = (∀ x, φ x) → (∃ x, ψ x) : symm (imp_or _ _)
theorem forall_uninhabited {A : (Type U)} {B : A → Bool} (H : ¬ inhabited A) : ∀ x, B x
:= by_contradiction (assume N : ¬ (∀ x, B x),
obtain w Hw, from not_forall_elim N,
absurd (inhabited_intro w) H)
theorem allext {A : (Type U)} {B C : A → Bool} (H : ∀ x : A, B x = C x) : (∀ x : A, B x) = (∀ x : A, C x)
:= boolext
(assume Hl, take x, (H x) ◂ (Hl x))
(assume Hr, take x, (symm (H x)) ◂ (Hr x))
theorem proj1_congr {A : (Type U)} {B : A → (Type U)} {a b : sig x, B x} (H : a = b) : proj1 a = proj1 b
:= subst (refl (proj1 a)) H
theorem proj2_congr {A B : (Type U)} {a b : A # B} (H : a = b) : proj2 a = proj2 b
:= subst (refl (proj2 a)) H
theorem hproj2_congr {A : (Type U)} {B : A → (Type U)} {a b : sig x, B x} (H : a = b) : proj2 a == proj2 b
:= subst (hrefl (proj2 a)) H
-- Up to this point, we proved all theorems using just reflexivity, substitution and case (proof by cases)
-- Function extensionality
axiom funext {A : (Type U)} {B : A → (Type U)} {f g : ∀ x : A, B x} (H : ∀ x : A, f x = g x) : f = g
-- Eta is a consequence of function extensionality
theorem eta {A : (Type U)} {B : A → (Type U)} (f : ∀ x : A, B x) : (λ x : A, f x) = f
:= funext (λ x : A, refl (f x))
-- Epsilon (Hilbert's operator)
variable eps {A : (Type U)} (H : inhabited A) (P : A → Bool) : A
alias ε : eps
axiom eps_ax {A : (Type U)} (H : inhabited A) {P : A → Bool} (a : A) : P a → P (ε H P)
theorem eps_th {A : (Type U)} {P : A → Bool} (a : A) : P a → P (ε (inhabited_intro a) P)
:= assume H : P a, @eps_ax A (inhabited_intro a) P a H
theorem eps_singleton {A : (Type U)} (H : inhabited A) (a : A) : ε H (λ x, x = a) = a
:= let P := λ x, x = a,
Ha : P a := refl a
in eps_ax H a Ha
-- A function space (∀ x : A, B x) is inhabited if forall a : A, we have inhabited (B a)
theorem inhabited_dfun {A : (Type U)} {B : A → (Type U)} (Hn : ∀ a, inhabited (B a)) : inhabited (∀ x, B x)
:= inhabited_intro (λ x, ε (Hn x) (λ y, true))
theorem inhabited_fun (A : (Type U)) {B : (Type U)} (H : inhabited B) : inhabited (A → B)
:= inhabited_intro (λ x, ε H (λ y, true))
theorem exists_to_eps {A : (Type U)} {P : A → Bool} (H : ∃ x, P x) : P (ε (inhabited_ex_intro H) P)
:= obtain (w : A) (Hw : P w), from H,
@eps_ax _ (inhabited_ex_intro H) P w Hw
theorem axiom_of_choice {A : (Type U)} {B : A → (Type U)} {R : ∀ x : A, B x → Bool} (H : ∀ x, ∃ y, R x y) : ∃ f, ∀ x, R x (f x)
:= exists_intro
(λ x, ε (inhabited_ex_intro (H x)) (λ y, R x y)) -- witness for f
(λ x, exists_to_eps (H x)) -- proof that witness satisfies ∀ x, R x (f x)
theorem skolem_th {A : (Type U)} {B : A → (Type U)} {P : ∀ x : A, B x → Bool} :
(∀ x, ∃ y, P x y) ↔ ∃ f, (∀ x, P x (f x))
:= iff_intro
(λ H : (∀ x, ∃ y, P x y), @axiom_of_choice _ _ P H)
(λ H : (∃ f, (∀ x, P x (f x))),
take x, obtain (fw : ∀ x, B x) (Hw : ∀ x, P x (fw x)), from H,
exists_intro (fw x) (Hw x))
-- if-then-else expression, we define it using Hilbert's operator
definition ite {A : (Type U)} (c : Bool) (a b : A) : A
:= ε (inhabited_intro a) (λ r, (c → r = a) ∧ (¬ c → r = b))
notation 45 if _ then _ else _ : ite
theorem if_true {A : (Type U)} (a b : A) : (if true then a else b) = a
:= calc (if true then a else b) = ε (inhabited_intro a) (λ r, (true → r = a) ∧ (¬ true → r = b)) : refl (if true then a else b)
... = ε (inhabited_intro a) (λ r, r = a) : by simp
... = a : eps_singleton (inhabited_intro a) a
theorem if_false {A : (Type U)} (a b : A) : (if false then a else b) = b
:= calc (if false then a else b) = ε (inhabited_intro a) (λ r, (false → r = a) ∧ (¬ false → r = b)) : refl (if false then a else b)
... = ε (inhabited_intro a) (λ r, r = b) : by simp
... = b : eps_singleton (inhabited_intro a) b
theorem if_a_a {A : (Type U)} (c : Bool) (a: A) : (if c then a else a) = a
:= or_elim (em c)
(λ H : c, calc (if c then a else a) = (if true then a else a) : { eqt_intro H }
... = a : if_true a a)
(λ H : ¬ c, calc (if c then a else a) = (if false then a else a) : { eqf_intro H }
... = a : if_false a a)
add_rewrite if_true if_false if_a_a
theorem if_congr {A : (Type U)} {b c : Bool} {x y u v : A} (H_bc : b = c)
(H_xu : ∀ (H_c : c), x = u) (H_yv : ∀ (H_nc : ¬ c), y = v) :
(if b then x else y) = if c then u else v
:= or_elim (em c)
(λ H_c : c, calc
(if b then x else y) = if c then x else y : { H_bc }
... = if true then x else y : { eqt_intro H_c }
... = x : if_true _ _
... = u : H_xu H_c
... = if true then u else v : symm (if_true _ _)
... = if c then u else v : { symm (eqt_intro H_c) })
(λ H_nc : ¬ c, calc
(if b then x else y) = if c then x else y : { H_bc }
... = if false then x else y : { eqf_intro H_nc }
... = y : if_false _ _
... = v : H_yv H_nc
... = if false then u else v : symm (if_false _ _)
... = if c then u else v : { symm (eqf_intro H_nc) })
theorem if_imp_then {a b c : Bool} (H : if a then b else c) : a → b
:= assume Ha : a, eqt_elim (calc b = if true then b else c : symm (if_true b c)
... = if a then b else c : { symm (eqt_intro Ha) }
... = true : eqt_intro H)
theorem if_imp_else {a b c : Bool} (H : if a then b else c) : ¬ a → c
:= assume Hna : ¬ a, eqt_elim (calc c = if false then b else c : symm (if_false b c)
... = if a then b else c : { symm (eqf_intro Hna) }
... = true : eqt_intro H)
theorem app_if_distribute {A B : (Type U)} (c : Bool) (f : A → B) (a b : A) : f (if c then a else b) = if c then f a else f b
:= or_elim (em c)
(λ Hc : c , calc
f (if c then a else b) = f (if true then a else b) : { eqt_intro Hc }
... = f a : { if_true a b }
... = if true then f a else f b : symm (if_true (f a) (f b))
... = if c then f a else f b : { symm (eqt_intro Hc) })
(λ Hnc : ¬ c, calc
f (if c then a else b) = f (if false then a else b) : { eqf_intro Hnc }
... = f b : { if_false a b }
... = if false then f a else f b : symm (if_false (f a) (f b))
... = if c then f a else f b : { symm (eqf_intro Hnc) })
theorem eq_if_distributer {A : (Type U)} (c : Bool) (a b v : A) : (v = (if c then a else b)) = if c then v = a else v = b
:= app_if_distribute c (eq v) a b
theorem eq_if_distributel {A : (Type U)} (c : Bool) (a b v : A) : ((if c then a else b) = v) = if c then a = v else b = v
:= app_if_distribute c (λ x, x = v) a b
set_opaque exists true
set_opaque not true
set_opaque or true
set_opaque and true
set_opaque implies true
set_opaque ite true
set_opaque eq true
definition injective {A B : (Type U)} (f : A → B) := ∀ x1 x2, f x1 = f x2 → x1 = x2
definition non_surjective {A B : (Type U)} (f : A → B) := ∃ y, ∀ x, ¬ f x = y
-- The set of individuals, we need to assert the existence of one infinite set
variable ind : Type
-- ind is infinite, i.e., there is a function f s.t. f is injective, and not surjective
axiom infinity : ∃ f : ind → ind, injective f ∧ non_surjective f
-- Pair extensionality
axiom pairext {A : (Type U)} {B : A → (Type U)} (a b : sig x, B x)
(H1 : proj1 a = proj1 b) (H2 : proj2 a == proj2 b)
: a = b
theorem pair_proj_eq {A : (Type U)} {B : A → (Type U)} (a : sig x, B x) : pair (proj1 a) (proj2 a) = a
:= have Heq1 : proj1 (pair (proj1 a) (proj2 a)) = proj1 a,
from refl (proj1 a),
have Heq2 : proj2 (pair (proj1 a) (proj2 a)) == proj2 a,
from hrefl (proj2 a),
show pair (proj1 a) (proj2 a) = a,
from pairext (pair (proj1 a) (proj2 a)) a Heq1 Heq2
theorem pair_congr {A : (Type U)} {B : A → (Type U)} {a a' : A} {b : B a} {b' : B a'} (Ha : a = a') (Hb : b == b')
: (pair a b) = (pair a' b')
:= have Heq1 : proj1 (pair a b) = proj1 (pair a' b'),
from Ha,
have Heq2 : proj2 (pair a b) == proj2 (pair a' b'),
from Hb,
show (pair a b) = (pair a' b'),
from pairext (pair a b) (pair a' b') Heq1 Heq2
theorem pairext_proj {A B : (Type U)} {p : A # B} {a : A} {b : B} (H1 : proj1 p = a) (H2 : proj2 p = b) : p = (pair a b)
:= pairext p (pair a b) H1 (to_heq H2)
theorem hpairext_proj {A : (Type U)} {B : A → (Type U)} {p : sig x, B x} {a : A} {b : B a}
(H1 : proj1 p = a) (H2 : proj2 p == b) : p = (pair a b)
:= pairext p (pair a b) H1 H2
-- Heterogeneous equality axioms and theorems
-- We can "type-cast" an A expression into a B expression, if we can prove that A == B
-- Remark: we use A == B instead of A = B, because A = B would be type incorrect.
-- A = B is actually (@eq (Type U) A B), which is type incorrect because
-- the first argument of eq must have type (Type U) and the type of (Type U) is (Type U+1)
variable cast {A B : (Type U+1)} : A == B → A → B
axiom cast_heq {A B : (Type U+1)} (H : A == B) (a : A) : cast H a == a
-- Heterogeneous equality satisfies the usual properties: symmetry, transitivity, congruence, function extensionality, ...
-- Heterogeneous version of subst
axiom hsubst {A B : (Type U+1)} {a : A} {b : B} (P : ∀ T : (Type U+1), T → Bool) : P A a → a == b → P B b
theorem hsymm {A B : (Type U+1)} {a : A} {b : B} (H : a == b) : b == a
:= hsubst (λ (T : (Type U+1)) (x : T), x == a) (hrefl a) H
theorem htrans {A B C : (Type U+1)} {a : A} {b : B} {c : C} (H1 : a == b) (H2 : b == c) : a == c
:= hsubst (λ (T : (Type U+1)) (x : T), a == x) H1 H2
axiom hcongr {A A' : (Type U+1)} {B : A → (Type U+1)} {B' : A' → (Type U+1)} {f : ∀ x, B x} {f' : ∀ x, B' x} {a : A} {a' : A'} :
f == f' → a == a' → f a == f' a'
axiom hfunext {A A' : (Type U+1)} {B : A → (Type U+1)} {B' : A' → (Type U+1)} {f : ∀ x, B x} {f' : ∀ x, B' x} :
A == A' → (∀ x x', x == x' → f x == f' x') → f == f'
axiom hpiext {A A' : (Type U+1)} {B : A → (Type U+1)} {B' : A' → (Type U+1)} :
A == A' → (∀ x x', x == x' → B x == B' x') → (∀ x, B x) == (∀ x, B' x)
axiom hsigext {A A' : (Type U+1)} {B : A → (Type U+1)} {B' : A' → (Type U+1)} :
A == A' → (∀ x x', x == x' → B x == B' x') → (sig x, B x) == (sig x, B' x)
-- Heterogeneous version of the allext theorem
theorem hallext {A A' : (Type U+1)} {B : A → Bool} {B' : A' → Bool}
(Ha : A == A') (Hb : ∀ x x', x == x' → B x = B' x') : (∀ x, B x) = (∀ x, B' x)
:= to_eq (hpiext Ha (λ x x' Heq, to_heq (Hb x x' Heq)))
-- Simpler version of hfunext axiom, we use it to build proofs
theorem hsfunext {A : (Type U)} {B B' : A → (Type U)} {f : ∀ x, B x} {f' : ∀ x, B' x} :
(∀ x, f x == f' x) → f == f'
:= λ Hb,
hfunext (hrefl A) (λ (x x' : A) (Heq : x == x'),
let s1 : f x == f' x := Hb x,
s2 : f' x == f' x' := hcongr (hrefl f') Heq
in htrans s1 s2)
theorem heq_congr {A B : (Type U)} {a a' : A} {b b' : B} (H1 : a = a') (H2 : b = b') : (a == b) = (a' == b')
:= calc (a == b) = (a' == b) : { H1 }
... = (a' == b') : { H2 }
theorem hheq_congr {A A' B B' : (Type U+1)} {a : A} {a' : A'} {b : B} {b' : B'} (H1 : a == a') (H2 : b == b') : (a == b) = (a' == b')
:= have Heq1 : (a == b) = (a' == b),
from (hsubst (λ (T : (Type U+1)) (x : T), (a == b) = (x == b)) (refl (a == b)) H1),
have Heq2 : (a' == b) = (a' == b'),
from (hsubst (λ (T : (Type U+1)) (x : T), (a' == b) = (a' == x)) (refl (a' == b)) H2),
show (a == b) = (a' == b'),
from trans Heq1 Heq2
theorem type_eq {A B : (Type U)} {a : A} {b : B} (H : a == b) : A == B
:= hsubst (λ (T : (Type U+1)) (x : T), A == T) (hrefl A) H
-- Some theorems that are useful for applying simplifications.
theorem cast_eq {A : (Type U)} (H : A == A) (a : A) : cast H a = a
:= to_eq (cast_heq H a)
theorem cast_trans {A B C : (Type U)} (Hab : A == B) (Hbc : B == C) (a : A) : cast Hbc (cast Hab a) = cast (htrans Hab Hbc) a
:= have Heq1 : cast Hbc (cast Hab a) == cast Hab a,
from cast_heq Hbc (cast Hab a),
have Heq2 : cast Hab a == a,
from cast_heq Hab a,
have Heq3 : cast (htrans Hab Hbc) a == a,
from cast_heq (htrans Hab Hbc) a,
show cast Hbc (cast Hab a) = cast (htrans Hab Hbc) a,
from to_eq (htrans (htrans Heq1 Heq2) (hsymm Heq3))
theorem cast_pull {A : (Type U)} {B B' : A → (Type U)}
(f : ∀ x, B x) (a : A) (Hb : (∀ x, B x) == (∀ x, B' x)) (Hba : (B a) == (B' a)) :
cast Hb f a = cast Hba (f a)
:= have s1 : cast Hb f a == f a,
from hcongr (cast_heq Hb f) (hrefl a),
have s2 : cast Hba (f a) == f a,
from cast_heq Hba (f a),
show cast Hb f a = cast Hba (f a),
from to_eq (htrans s1 (hsymm s2))
-- Proof irrelevance is true in the set theoretic model we have for Lean.
axiom proof_irrel {a : Bool} (H1 H2 : a) : H1 = H2
-- A more general version of proof_irrel that can be be derived using proof_irrel, heq axioms and boolext/iff_intro
theorem hproof_irrel {a b : Bool} (H1 : a) (H2 : b) : H1 == H2
:= let Hab : a == b := to_heq (iff_intro (assume Ha, H2) (assume Hb, H1)),
H1b : b := cast Hab H1,
H1_eq_H1b : H1 == H1b := hsymm (cast_heq Hab H1),
H1b_eq_H2 : H1b == H2 := to_heq (proof_irrel H1b H2)
in htrans H1_eq_H1b H1b_eq_H2