cb12b9b876
Fixed proofs that broke when we tried to implement a "checkpoint" have.
136 lines
4.8 KiB
Text
136 lines
4.8 KiB
Text
/-
|
|
Copyright (c) 2015 Nathaniel Thomas. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
Authors: Nathaniel Thomas, Jeremy Avigad
|
|
|
|
Modules and vector spaces over a ring.
|
|
-/
|
|
import algebra.field
|
|
|
|
structure has_scalar [class] (F V : Type) :=
|
|
(smul : F → V → V)
|
|
|
|
infixl ` • `:73 := has_scalar.smul
|
|
|
|
/- modules over a ring -/
|
|
|
|
structure left_module [class] (R M : Type) [ringR : ring R]
|
|
extends has_scalar R M, add_comm_group M :=
|
|
(smul_left_distrib : ∀ (r : R) (x y : M), smul r (add x y) = (add (smul r x) (smul r y)))
|
|
(smul_right_distrib : ∀ (r s : R) (x : M), smul (ring.add r s) x = (add (smul r x) (smul s x)))
|
|
(mul_smul : ∀ r s x, smul (mul r s) x = smul r (smul s x))
|
|
(one_smul : ∀ x, smul one x = x)
|
|
|
|
section left_module
|
|
variables {R M : Type}
|
|
variable [ringR : ring R]
|
|
variable [moduleRM : left_module R M]
|
|
include ringR moduleRM
|
|
|
|
-- Note: the anonymous include does not work in the propositions below.
|
|
|
|
proposition smul_left_distrib (a : R) (u v : M) : a • (u + v) = a • u + a • v :=
|
|
!left_module.smul_left_distrib
|
|
|
|
proposition smul_right_distrib (a b : R) (u : M) : (a + b) • u = a • u + b • u :=
|
|
!left_module.smul_right_distrib
|
|
|
|
proposition mul_smul (a : R) (b : R) (u : M) : (a * b) • u = a • (b • u) :=
|
|
!left_module.mul_smul
|
|
|
|
proposition one_smul (u : M) : (1 : R) • u = u := !left_module.one_smul
|
|
|
|
proposition zero_smul (u : M) : (0 : R) • u = 0 :=
|
|
have (0 : R) • u + 0 • u = 0 • u + 0, by rewrite [-smul_right_distrib, *add_zero],
|
|
!add.left_cancel this
|
|
|
|
proposition smul_zero (a : R) : a • (0 : M) = 0 :=
|
|
have a • (0:M) + a • 0 = a • 0 + 0, by rewrite [-smul_left_distrib, *add_zero],
|
|
!add.left_cancel this
|
|
|
|
proposition neg_smul (a : R) (u : M) : (-a) • u = - (a • u) :=
|
|
eq_neg_of_add_eq_zero (by rewrite [-smul_right_distrib, add.left_inv, zero_smul])
|
|
|
|
proposition neg_one_smul (u : M) : -(1 : R) • u = -u :=
|
|
by rewrite [neg_smul, one_smul]
|
|
|
|
proposition smul_neg (a : R) (u : M) : a • (-u) = -(a • u) :=
|
|
by rewrite [-neg_one_smul, -mul_smul, mul_neg_one_eq_neg, neg_smul]
|
|
|
|
proposition smul_sub_left_distrib (a : R) (u v : M) : a • (u - v) = a • u - a • v :=
|
|
by rewrite [sub_eq_add_neg, smul_left_distrib, smul_neg]
|
|
|
|
proposition sub_smul_right_distrib (a b : R) (v : M) : (a - b) • v = a • v - b • v :=
|
|
by rewrite [sub_eq_add_neg, smul_right_distrib, neg_smul]
|
|
end left_module
|
|
|
|
/- linear maps -/
|
|
|
|
structure is_linear_map [class] (R : Type) {M₁ M₂ : Type}
|
|
[smul₁ : has_scalar R M₁] [smul₂ : has_scalar R M₂]
|
|
[add₁ : has_add M₁] [add₂ : has_add M₂]
|
|
(T : M₁ → M₂) :=
|
|
(additive : ∀ u v : M₁, T (u + v) = T u + T v)
|
|
(homogeneous : ∀ a : R, ∀ u : M₁, T (a • u) = a • T u)
|
|
|
|
proposition linear_map_additive (R : Type) {M₁ M₂ : Type}
|
|
[smul₁ : has_scalar R M₁] [smul₂ : has_scalar R M₂]
|
|
[add₁ : has_add M₁] [add₂ : has_add M₂]
|
|
(T : M₁ → M₂) [linT : is_linear_map R T] (u v : M₁) :
|
|
T (u + v) = T u + T v :=
|
|
is_linear_map.additive smul₁ smul₂ _ _ T u v
|
|
|
|
proposition linear_map_homogeneous {R M₁ M₂ : Type}
|
|
[smul₁ : has_scalar R M₁] [smul₂ : has_scalar R M₂]
|
|
[add₁ : has_add M₁] [add₂ : has_add M₂]
|
|
(T : M₁ → M₂) [linT : is_linear_map R T] (a : R) (u : M₁) :
|
|
T (a • u) = a • T u :=
|
|
is_linear_map.homogeneous smul₁ smul₂ _ _ T a u
|
|
|
|
proposition is_linear_map_id [instance] (R : Type) {M : Type}
|
|
[smulRM : has_scalar R M] [has_addM : has_add M] :
|
|
is_linear_map R (id : M → M) :=
|
|
is_linear_map.mk (take u v, rfl) (take a u, rfl)
|
|
|
|
section is_linear_map
|
|
variables {R M₁ M₂ : Type}
|
|
variable [ringR : ring R]
|
|
variable [moduleRM₁ : left_module R M₁]
|
|
variable [moduleRM₂ : left_module R M₂]
|
|
include ringR moduleRM₁ moduleRM₂
|
|
|
|
variable T : M₁ → M₂
|
|
variable [is_linear_mapT : is_linear_map R T]
|
|
include is_linear_mapT
|
|
|
|
proposition linear_map_zero : T 0 = 0 :=
|
|
calc
|
|
T 0 = T ((0 : R) • 0) : zero_smul
|
|
... = (0 : R) • T 0 : linear_map_homogeneous T
|
|
... = 0 : zero_smul
|
|
|
|
proposition linear_map_neg (u : M₁) : T (-u) = -(T u) :=
|
|
by rewrite [-neg_one_smul, linear_map_homogeneous T, neg_one_smul]
|
|
|
|
proposition linear_map_smul_add_smul (a b : R) (u v : M₁) :
|
|
T (a • u + b • v) = a • T u + b • T v :=
|
|
by rewrite [linear_map_additive R T, *linear_map_homogeneous T]
|
|
end is_linear_map
|
|
|
|
/- vector spaces -/
|
|
|
|
structure vector_space [class] (F V : Type) [fieldF : field F]
|
|
extends left_module F V
|
|
|
|
/- an example -/
|
|
|
|
section
|
|
variables (F V : Type)
|
|
variables [field F] [vector_spaceFV : vector_space F V]
|
|
variable T : V → V
|
|
variable [is_linear_map F T]
|
|
include vector_spaceFV
|
|
|
|
example (a b : F) (u v : V) : T (a • u + b • v) = a • T u + b • T v :=
|
|
!linear_map_smul_add_smul
|
|
end
|