267 lines
11 KiB
Text
267 lines
11 KiB
Text
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||
-- Author: Jeremy Avigad, Jakob von Raumer
|
||
-- Ported from Coq HoTT
|
||
prelude
|
||
import .path .function
|
||
open eq function
|
||
|
||
-- Equivalences
|
||
-- ------------
|
||
|
||
-- This is our definition of equivalence. In the HoTT-book it's called
|
||
-- ihae (half-adjoint equivalence).
|
||
structure is_equiv [class] {A B : Type} (f : A → B) :=
|
||
(inv : B → A)
|
||
(retr : (f ∘ inv) ∼ id)
|
||
(sect : (inv ∘ f) ∼ id)
|
||
(adj : Πx, retr (f x) = ap f (sect x))
|
||
|
||
|
||
-- A more bundled version of equivalence to calculate with
|
||
structure equiv (A B : Type) :=
|
||
(to_fun : A → B)
|
||
(to_is_equiv : is_equiv to_fun)
|
||
|
||
-- Some instances and closure properties of equivalences
|
||
namespace is_equiv
|
||
|
||
postfix `⁻¹` := inv
|
||
|
||
variables {A B C : Type} (f : A → B) (g : B → C) {f' : A → B}
|
||
|
||
-- The identity function is an equivalence.
|
||
definition id_is_equiv : (@is_equiv A A id) := is_equiv.mk id (λa, idp) (λa, idp) (λa, idp)
|
||
|
||
-- The composition of two equivalences is, again, an equivalence.
|
||
protected definition compose [Hf : is_equiv f] [Hg : is_equiv g] : (is_equiv (g ∘ f)) :=
|
||
is_equiv.mk ((inv f) ∘ (inv g))
|
||
(λc, ap g (retr f (g⁻¹ c)) ⬝ retr g c)
|
||
(λa, ap (inv f) (sect g (f a)) ⬝ sect f a)
|
||
(λa, (whiskerL _ (adj g (f a))) ⬝
|
||
(ap_pp g _ _)⁻¹ ⬝
|
||
ap02 g (concat_A1p (retr f) (sect g (f a))⁻¹ ⬝
|
||
(ap_compose (inv f) f _ ◾ adj f a) ⬝
|
||
(ap_pp f _ _)⁻¹
|
||
) ⬝
|
||
(ap_compose f g _)⁻¹
|
||
)
|
||
|
||
-- Any function equal to an equivalence is an equivlance as well.
|
||
definition path_closed [Hf : is_equiv f] (Heq : f = f') : (is_equiv f') :=
|
||
eq.rec_on Heq Hf
|
||
|
||
-- Any function pointwise equal to an equivalence is an equivalence as well.
|
||
definition homotopy_closed [Hf : is_equiv f] (Hty : f ∼ f') : (is_equiv f') :=
|
||
let sect' := (λ b, (Hty (inv f b))⁻¹ ⬝ retr f b) in
|
||
let retr' := (λ a, (ap (inv f) (Hty a))⁻¹ ⬝ sect f a) in
|
||
let adj' := (λ (a : A),
|
||
let ff'a := Hty a in
|
||
let invf := inv f in
|
||
let secta := sect f a in
|
||
let retrfa := retr f (f a) in
|
||
let retrf'a := retr f (f' a) in
|
||
have eq1 : _ = _,
|
||
from calc ap f secta ⬝ ff'a
|
||
= retrfa ⬝ ff'a : ap _ (@adj _ _ f _ _)
|
||
... = ap (f ∘ invf) ff'a ⬝ retrf'a : concat_A1p
|
||
... = ap f (ap invf ff'a) ⬝ retrf'a : ap_compose invf f,
|
||
have eq2 : _ = _,
|
||
from calc retrf'a
|
||
= (ap f (ap invf ff'a))⁻¹ ⬝ (ap f secta ⬝ ff'a) : moveL_Vp _ _ _ (eq1⁻¹)
|
||
... = ap f (ap invf ff'a)⁻¹ ⬝ (ap f secta ⬝ Hty a) : ap_V invf ff'a
|
||
... = ap f (ap invf ff'a)⁻¹ ⬝ (Hty (invf (f a)) ⬝ ap f' secta) : concat_Ap
|
||
... = (ap f (ap invf ff'a)⁻¹ ⬝ Hty (invf (f a))) ⬝ ap f' secta : concat_pp_p
|
||
... = (ap f ((ap invf ff'a)⁻¹) ⬝ Hty (invf (f a))) ⬝ ap f' secta : ap_V
|
||
... = (Hty (invf (f' a)) ⬝ ap f' ((ap invf ff'a)⁻¹)) ⬝ ap f' secta : concat_Ap
|
||
... = (Hty (invf (f' a)) ⬝ (ap f' (ap invf ff'a))⁻¹) ⬝ ap f' secta : ap_V
|
||
... = Hty (invf (f' a)) ⬝ ((ap f' (ap invf ff'a))⁻¹ ⬝ ap f' secta) : concat_pp_p,
|
||
have eq3 : _ = _,
|
||
from calc (Hty (invf (f' a)))⁻¹ ⬝ retrf'a
|
||
= (ap f' (ap invf ff'a))⁻¹ ⬝ ap f' secta : moveR_Vp _ _ _ eq2
|
||
... = (ap f' ((ap invf ff'a)⁻¹)) ⬝ ap f' secta : ap_V
|
||
... = ap f' ((ap invf ff'a)⁻¹ ⬝ secta) : ap_pp,
|
||
eq3) in
|
||
is_equiv.mk (inv f) sect' retr' adj'
|
||
end is_equiv
|
||
|
||
namespace is_equiv
|
||
context
|
||
parameters {A B : Type} (f : A → B) (g : B → A)
|
||
(ret : f ∘ g ∼ id) (sec : g ∘ f ∼ id)
|
||
|
||
definition adjointify_sect' : g ∘ f ∼ id :=
|
||
(λx, ap g (ap f (inverse (sec x))) ⬝ ap g (ret (f x)) ⬝ sec x)
|
||
|
||
definition adjointify_adj' : Π (x : A), ret (f x) = ap f (adjointify_sect' x) :=
|
||
(λ (a : A),
|
||
let fgretrfa := ap f (ap g (ret (f a))) in
|
||
let fgfinvsect := ap f (ap g (ap f ((sec a)⁻¹))) in
|
||
let fgfa := f (g (f a)) in
|
||
let retrfa := ret (f a) in
|
||
have eq1 : ap f (sec a) = _,
|
||
from calc ap f (sec a)
|
||
= idp ⬝ ap f (sec a) : !concat_1p⁻¹
|
||
... = (ret (f a) ⬝ (ret (f a)⁻¹)) ⬝ ap f (sec a) : concat_pV
|
||
... = ((ret (fgfa))⁻¹ ⬝ ap (f ∘ g) (ret (f a))) ⬝ ap f (sec a) : {!concat_pA1⁻¹}
|
||
... = ((ret (fgfa))⁻¹ ⬝ fgretrfa) ⬝ ap f (sec a) : {ap_compose g f _}
|
||
... = (ret (fgfa))⁻¹ ⬝ (fgretrfa ⬝ ap f (sec a)) : !concat_pp_p,
|
||
have eq2 : ap f (sec a) ⬝ idp = (ret fgfa)⁻¹ ⬝ (fgretrfa ⬝ ap f (sec a)),
|
||
from !concat_p1 ⬝ eq1,
|
||
have eq3 : idp = _,
|
||
from calc idp
|
||
= (ap f (sec a))⁻¹ ⬝ ((ret fgfa)⁻¹ ⬝ (fgretrfa ⬝ ap f (sec a))) : moveL_Vp _ _ _ eq2
|
||
... = (ap f (sec a)⁻¹ ⬝ (ret fgfa)⁻¹) ⬝ (fgretrfa ⬝ ap f (sec a)) : !concat_p_pp
|
||
... = (ap f ((sec a)⁻¹) ⬝ (ret fgfa)⁻¹) ⬝ (fgretrfa ⬝ ap f (sec a)) : {!ap_V⁻¹}
|
||
... = ((ap f ((sec a)⁻¹) ⬝ (ret fgfa)⁻¹) ⬝ fgretrfa) ⬝ ap f (sec a) : !concat_p_pp
|
||
... = ((retrfa⁻¹ ⬝ ap (f ∘ g) (ap f ((sec a)⁻¹))) ⬝ fgretrfa) ⬝ ap f (sec a) : {!concat_pA1⁻¹}
|
||
... = ((retrfa⁻¹ ⬝ fgfinvsect) ⬝ fgretrfa) ⬝ ap f (sec a) : {ap_compose g f _}
|
||
... = (retrfa⁻¹ ⬝ (fgfinvsect ⬝ fgretrfa)) ⬝ ap f (sec a) : {!concat_p_pp⁻¹}
|
||
... = retrfa⁻¹ ⬝ ap f (ap g (ap f ((sec a)⁻¹)) ⬝ ap g (ret (f a))) ⬝ ap f (sec a) : {!ap_pp⁻¹}
|
||
... = retrfa⁻¹ ⬝ (ap f (ap g (ap f ((sec a)⁻¹)) ⬝ ap g (ret (f a))) ⬝ ap f (sec a)) : !concat_p_pp⁻¹
|
||
... = retrfa⁻¹ ⬝ ap f ((ap g (ap f ((sec a)⁻¹)) ⬝ ap g (ret (f a))) ⬝ sec a) : {!ap_pp⁻¹},
|
||
have eq4 : ret (f a) = ap f ((ap g (ap f ((sec a)⁻¹)) ⬝ ap g (ret (f a))) ⬝ sec a),
|
||
from moveR_M1 _ _ eq3,
|
||
eq4)
|
||
|
||
definition adjointify : is_equiv f :=
|
||
is_equiv.mk g ret adjointify_sect' adjointify_adj'
|
||
|
||
end
|
||
end is_equiv
|
||
|
||
namespace is_equiv
|
||
variables {A B: Type} (f : A → B)
|
||
|
||
--The inverse of an equivalence is, again, an equivalence.
|
||
definition inv_closed [instance] [Hf : is_equiv f] : (is_equiv (inv f)) :=
|
||
adjointify (inv f) f (sect f) (retr f)
|
||
|
||
end is_equiv
|
||
|
||
namespace is_equiv
|
||
variables {A : Type}
|
||
section
|
||
variables {B C : Type} (f : A → B) {f' : A → B} [Hf : is_equiv f]
|
||
include Hf
|
||
|
||
definition cancel_R (g : B → C) [Hgf : is_equiv (g ∘ f)] : (is_equiv g) :=
|
||
have Hfinv [visible] : is_equiv (f⁻¹), from inv_closed f,
|
||
@homotopy_closed _ _ _ _ (compose (f⁻¹) (g ∘ f)) (λb, ap g (@retr _ _ f _ b))
|
||
|
||
definition cancel_L (g : C → A) [Hgf : is_equiv (f ∘ g)] : (is_equiv g) :=
|
||
have Hfinv [visible] : is_equiv (f⁻¹), from inv_closed f,
|
||
@homotopy_closed _ _ _ _ (compose (f ∘ g) (f⁻¹)) (λa, sect f (g a))
|
||
|
||
--Rewrite rules
|
||
definition moveR_M {x : A} {y : B} (p : x = (inv f) y) : (f x = y) :=
|
||
(ap f p) ⬝ (@retr _ _ f _ y)
|
||
|
||
definition moveL_M {x : A} {y : B} (p : (inv f) y = x) : (y = f x) :=
|
||
(moveR_M f (p⁻¹))⁻¹
|
||
|
||
definition moveR_V {x : B} {y : A} (p : x = f y) : (inv f) x = y :=
|
||
ap (f⁻¹) p ⬝ sect f y
|
||
|
||
definition moveL_V {x : B} {y : A} (p : f y = x) : y = (inv f) x :=
|
||
(moveR_V f (p⁻¹))⁻¹
|
||
|
||
definition ap_closed [instance] (x y : A) : is_equiv (ap f) :=
|
||
adjointify (ap f)
|
||
(λq, (inverse (sect f x)) ⬝ ap (f⁻¹) q ⬝ sect f y)
|
||
(λq, !ap_pp
|
||
⬝ whiskerR !ap_pp _
|
||
⬝ ((!ap_V ⬝ inverse2 ((adj f _)⁻¹))
|
||
◾ (inverse (ap_compose (f⁻¹) f _))
|
||
◾ (adj f _)⁻¹)
|
||
⬝ concat_pA1_p (retr f) _ _
|
||
⬝ whiskerR !concat_Vp _
|
||
⬝ !concat_1p)
|
||
(λp, whiskerR (whiskerL _ ((ap_compose f (f⁻¹) _)⁻¹)) _
|
||
⬝ concat_pA1_p (sect f) _ _
|
||
⬝ whiskerR !concat_Vp _
|
||
⬝ !concat_1p)
|
||
|
||
-- The function equiv_rect says that given an equivalence f : A → B,
|
||
-- and a hypothesis from B, one may always assume that the hypothesis
|
||
-- is in the image of e.
|
||
|
||
-- In fibrational terms, if we have a fibration over B which has a section
|
||
-- once pulled back along an equivalence f : A → B, then it has a section
|
||
-- over all of B.
|
||
|
||
definition equiv_rect (P : B -> Type) :
|
||
(Πx, P (f x)) → (Πy, P y) :=
|
||
(λg y, eq.transport _ (retr f y) (g (f⁻¹ y)))
|
||
|
||
definition equiv_rect_comp (P : B → Type)
|
||
(df : Π (x : A), P (f x)) (x : A) : equiv_rect f P df (f x) = df x :=
|
||
calc equiv_rect f P df (f x)
|
||
= transport P (retr f (f x)) (df (f⁻¹ (f x))) : idp
|
||
... = transport P (ap f (sect f x)) (df (f⁻¹ (f x))) : adj f
|
||
... = transport (P ∘ f) (sect f x) (df (f⁻¹ (f x))) : transport_compose
|
||
... = df x : apD df (sect f x)
|
||
|
||
end
|
||
|
||
--Transporting is an equivalence
|
||
protected definition transport [instance] (P : A → Type) {x y : A} (p : x = y) : (is_equiv (transport P p)) :=
|
||
is_equiv.mk (transport P (p⁻¹)) (transport_pV P p) (transport_Vp P p) (transport_pVp P p)
|
||
|
||
end is_equiv
|
||
|
||
namespace equiv
|
||
|
||
instance [persistent] to_is_equiv
|
||
|
||
infix `≃`:25 := equiv
|
||
|
||
context
|
||
parameters {A B C : Type} (eqf : A ≃ B)
|
||
|
||
private definition f : A → B := to_fun eqf
|
||
private definition Hf [instance] : is_equiv f := to_is_equiv eqf
|
||
|
||
protected definition refl : A ≃ A := equiv.mk id is_equiv.id_is_equiv
|
||
|
||
theorem trans (eqg: B ≃ C) : A ≃ C :=
|
||
equiv.mk ((to_fun eqg) ∘ f)
|
||
(is_equiv.compose f (to_fun eqg))
|
||
|
||
theorem path_closed (f' : A → B) (Heq : to_fun eqf = f') : A ≃ B :=
|
||
equiv.mk f' (is_equiv.path_closed f Heq)
|
||
|
||
theorem symm : B ≃ A :=
|
||
equiv.mk (is_equiv.inv f) !is_equiv.inv_closed
|
||
|
||
theorem cancel_R (g : B → C) [Hgf : is_equiv (g ∘ f)] : B ≃ C :=
|
||
equiv.mk g (is_equiv.cancel_R f _)
|
||
|
||
theorem cancel_L (g : C → A) [Hgf : is_equiv (f ∘ g)] : C ≃ A :=
|
||
equiv.mk g (is_equiv.cancel_L f _)
|
||
|
||
protected theorem transport (P : A → Type) {x y : A} {p : x = y} : (P x) ≃ (P y) :=
|
||
equiv.mk (transport P p) (is_equiv.transport P p)
|
||
|
||
end
|
||
|
||
context
|
||
parameters {A B : Type} (eqf eqg : A ≃ B)
|
||
|
||
private definition Hf [instance] : is_equiv (to_fun eqf) := to_is_equiv eqf
|
||
private definition Hg [instance] : is_equiv (to_fun eqg) := to_is_equiv eqg
|
||
|
||
--We need this theorem for the funext_from_ua proof
|
||
theorem inv_eq (p : eqf = eqg)
|
||
: is_equiv.inv (to_fun eqf) = is_equiv.inv (to_fun eqg) :=
|
||
eq.rec_on p idp
|
||
|
||
end
|
||
|
||
-- calc enviroment
|
||
-- Note: Calculating with substitutions needs univalence
|
||
calc_trans trans
|
||
calc_refl refl
|
||
calc_symm symm
|
||
|
||
end equiv
|