162 lines
5.7 KiB
Text
162 lines
5.7 KiB
Text
/-
|
||
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Floris van Doorn
|
||
|
||
n-truncation of types.
|
||
|
||
Ported from Coq HoTT
|
||
-/
|
||
|
||
/- The hit n-truncation is primitive, declared in init.hit. -/
|
||
|
||
import types.sigma types.pointed
|
||
|
||
open is_trunc eq equiv is_equiv function prod sum sigma
|
||
|
||
namespace trunc
|
||
|
||
protected definition elim {n : trunc_index} {A : Type} {P : Type}
|
||
[Pt : is_trunc n P] (H : A → P) : trunc n A → P :=
|
||
trunc.rec H
|
||
|
||
protected definition elim_on {n : trunc_index} {A : Type} {P : Type} (aa : trunc n A)
|
||
[Pt : is_trunc n P] (H : A → P) : P :=
|
||
trunc.elim H aa
|
||
|
||
end trunc
|
||
|
||
attribute trunc.elim_on [unfold 4]
|
||
attribute trunc.rec [recursor 6]
|
||
attribute trunc.elim [recursor 6] [unfold 6]
|
||
|
||
namespace trunc
|
||
|
||
variables {X Y Z : Type} {P : X → Type} (n : trunc_index) (A B : Type)
|
||
|
||
local attribute is_trunc_eq [instance]
|
||
|
||
variables {A n}
|
||
definition untrunc_of_is_trunc [reducible] [unfold 4] [H : is_trunc n A] : trunc n A → A :=
|
||
trunc.rec id
|
||
|
||
variables (A n)
|
||
definition is_equiv_tr [instance] [constructor] [H : is_trunc n A] : is_equiv (@tr n A) :=
|
||
adjointify _
|
||
(untrunc_of_is_trunc)
|
||
(λaa, trunc.rec_on aa (λa, idp))
|
||
(λa, idp)
|
||
|
||
definition trunc_equiv [constructor] [H : is_trunc n A] : trunc n A ≃ A :=
|
||
(equiv.mk tr _)⁻¹ᵉ
|
||
|
||
definition is_trunc_of_is_equiv_tr [H : is_equiv (@tr n A)] : is_trunc n A :=
|
||
is_trunc_is_equiv_closed n (@tr n _)⁻¹
|
||
|
||
/- Functoriality -/
|
||
definition trunc_functor [unfold 5] (f : X → Y) : trunc n X → trunc n Y :=
|
||
λxx, trunc.rec_on xx (λx, tr (f x))
|
||
|
||
definition trunc_functor_compose [unfold 7] (f : X → Y) (g : Y → Z)
|
||
: trunc_functor n (g ∘ f) ~ trunc_functor n g ∘ trunc_functor n f :=
|
||
λxx, trunc.rec_on xx (λx, idp)
|
||
|
||
definition trunc_functor_id : trunc_functor n (@id A) ~ id :=
|
||
λxx, trunc.rec_on xx (λx, idp)
|
||
|
||
definition trunc_functor_cast {X Y : Type} (n : ℕ₋₂) (p : X = Y) :
|
||
trunc_functor n (cast p) ~ cast (ap (trunc n) p) :=
|
||
begin
|
||
intro x, induction x with x, esimp,
|
||
exact fn_tr_eq_tr_fn p (λy, tr) x ⬝ !tr_compose
|
||
end
|
||
|
||
definition is_equiv_trunc_functor [constructor] (f : X → Y) [H : is_equiv f]
|
||
: is_equiv (trunc_functor n f) :=
|
||
adjointify _
|
||
(trunc_functor n f⁻¹)
|
||
(λyy, trunc.rec_on yy (λy, ap tr !right_inv))
|
||
(λxx, trunc.rec_on xx (λx, ap tr !left_inv))
|
||
|
||
definition trunc_homotopy {f g : X → Y} (p : f ~ g) : trunc_functor n f ~ trunc_functor n g :=
|
||
λxx, trunc.rec_on xx (λx, ap tr (p x))
|
||
|
||
section
|
||
definition trunc_equiv_trunc [constructor] (f : X ≃ Y) : trunc n X ≃ trunc n Y :=
|
||
equiv.mk _ (is_equiv_trunc_functor n f)
|
||
end
|
||
|
||
section
|
||
open prod.ops
|
||
definition trunc_prod_equiv [constructor] : trunc n (X × Y) ≃ trunc n X × trunc n Y :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{exact (λpp, trunc.rec_on pp (λp, (tr p.1, tr p.2)))},
|
||
{intro p, cases p with xx yy,
|
||
apply (trunc.rec_on xx), intro x,
|
||
apply (trunc.rec_on yy), intro y, exact (tr (x,y))},
|
||
{intro p, cases p with xx yy,
|
||
apply (trunc.rec_on xx), intro x,
|
||
apply (trunc.rec_on yy), intro y, apply idp},
|
||
{intro pp, apply (trunc.rec_on pp), intro p, cases p, apply idp}
|
||
end
|
||
end
|
||
|
||
/- Propositional truncation -/
|
||
|
||
definition ttrunc [constructor] (n : ℕ₋₂) (X : Type) : n-Type :=
|
||
trunctype.mk (trunc n X) _
|
||
|
||
-- should this live in Prop?
|
||
definition merely [reducible] [constructor] (A : Type) : Prop := ttrunc -1 A
|
||
|
||
notation `||`:max A `||`:0 := merely A
|
||
notation `∥`:max A `∥`:0 := merely A
|
||
|
||
definition Exists [reducible] [constructor] (P : X → Type) : Prop := ∥ sigma P ∥
|
||
definition or [reducible] [constructor] (A B : Type) : Prop := ∥ A ⊎ B ∥
|
||
|
||
notation `exists` binders `,` r:(scoped P, Exists P) := r
|
||
notation `∃` binders `,` r:(scoped P, Exists P) := r
|
||
notation A ` \/ ` B := or A B
|
||
notation A ∨ B := or A B
|
||
|
||
definition merely.intro [reducible] [constructor] (a : A) : ∥ A ∥ := tr a
|
||
definition exists.intro [reducible] [constructor] (x : X) (p : P x) : ∃x, P x := tr ⟨x, p⟩
|
||
definition or.intro_left [reducible] [constructor] (x : X) : X ∨ Y := tr (inl x)
|
||
definition or.intro_right [reducible] [constructor] (y : Y) : X ∨ Y := tr (inr y)
|
||
|
||
definition exists.elim {A : Type} {p : A → Type} {B : Type} [is_prop B] (H : Exists p)
|
||
(H' : ∀ (a : A), p a → B) : B :=
|
||
trunc.elim (sigma.rec H') H
|
||
|
||
definition is_contr_of_merely_prop [H : is_prop A] (aa : merely A) : is_contr A :=
|
||
is_contr_of_inhabited_prop (trunc.rec_on aa id)
|
||
|
||
section
|
||
open sigma.ops
|
||
definition trunc_sigma_equiv [constructor] : trunc n (Σ x, P x) ≃ trunc n (Σ x, trunc n (P x)) :=
|
||
equiv.MK (λpp, trunc.rec_on pp (λp, tr ⟨p.1, tr p.2⟩))
|
||
(λpp, trunc.rec_on pp (λp, trunc.rec_on p.2 (λb, tr ⟨p.1, b⟩)))
|
||
(λpp, trunc.rec_on pp (λp, sigma.rec_on p (λa bb, trunc.rec_on bb (λb, by esimp))))
|
||
(λpp, trunc.rec_on pp (λp, sigma.rec_on p (λa b, by esimp)))
|
||
|
||
definition trunc_sigma_equiv_of_is_trunc [H : is_trunc n X]
|
||
: trunc n (Σ x, P x) ≃ Σ x, trunc n (P x) :=
|
||
calc
|
||
trunc n (Σ x, P x) ≃ trunc n (Σ x, trunc n (P x)) : trunc_sigma_equiv
|
||
... ≃ Σ x, trunc n (P x) : !trunc_equiv
|
||
end
|
||
|
||
/- the (non-dependent) universal property -/
|
||
definition trunc_arrow_equiv [constructor] [H : is_trunc n B] :
|
||
(trunc n A → B) ≃ (A → B) :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro g a, exact g (tr a)},
|
||
{ intro f x, exact trunc.rec_on x f},
|
||
{ intro f, apply eq_of_homotopy, intro a, reflexivity},
|
||
{ intro g, apply eq_of_homotopy, intro x, exact trunc.rec_on x (λa, idp)},
|
||
end
|
||
|
||
end trunc
|