eff59211ce
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
224 lines
6.4 KiB
Text
224 lines
6.4 KiB
Text
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||
-- Author: Leonardo de Moura
|
||
definition Bool [inline] := Type.{0}
|
||
|
||
inductive false : Bool :=
|
||
-- No constructors
|
||
|
||
theorem false_elim (c : Bool) (H : false)
|
||
:= false_rec c H
|
||
|
||
inductive true : Bool :=
|
||
| trivial : true
|
||
|
||
definition not (a : Bool) := a → false
|
||
precedence `¬`:40
|
||
notation `¬` a := not a
|
||
|
||
notation `assume` binders `,` r:(scoped f, f) := r
|
||
notation `take` binders `,` r:(scoped f, f) := r
|
||
|
||
theorem not_intro {a : Bool} (H : a → false) : ¬ a
|
||
:= H
|
||
|
||
theorem not_elim {a : Bool} (H1 : ¬ a) (H2 : a) : false
|
||
:= H1 H2
|
||
|
||
theorem absurd {a : Bool} (H1 : a) (H2 : ¬ a) : false
|
||
:= H2 H1
|
||
|
||
theorem mt {a b : Bool} (H1 : a → b) (H2 : ¬ b) : ¬ a
|
||
:= assume Ha : a, absurd (H1 Ha) H2
|
||
|
||
theorem contrapos {a b : Bool} (H : a → b) : ¬ b → ¬ a
|
||
:= assume Hnb : ¬ b, mt H Hnb
|
||
|
||
theorem absurd_elim {a : Bool} (b : Bool) (H1 : a) (H2 : ¬ a) : b
|
||
:= false_elim b (absurd H1 H2)
|
||
|
||
inductive and (a b : Bool) : Bool :=
|
||
| and_intro : a → b → and a b
|
||
|
||
infixr `/\` 35 := and
|
||
infixr `∧` 35 := and
|
||
|
||
theorem and_elim {a b c : Bool} (H1 : a → b → c) (H2 : a ∧ b) : c
|
||
:= and_rec H1 H2
|
||
|
||
theorem and_elim_left {a b : Bool} (H : a ∧ b) : a
|
||
:= and_rec (λ a b, a) H
|
||
|
||
theorem and_elim_right {a b : Bool} (H : a ∧ b) : b
|
||
:= and_rec (λ a b, b) H
|
||
|
||
inductive or (a b : Bool) : Bool :=
|
||
| or_intro_left : a → or a b
|
||
| or_intro_right : b → or a b
|
||
|
||
infixr `\/` 30 := or
|
||
infixr `∨` 30 := or
|
||
|
||
theorem or_elim {a b c : Bool} (H1 : a ∨ b) (H2 : a → c) (H3 : b → c) : c
|
||
:= or_rec H2 H3 H1
|
||
|
||
theorem resolve_right {a b : Bool} (H1 : a ∨ b) (H2 : ¬ a) : b
|
||
:= or_elim H1 (assume Ha, absurd_elim b Ha H2) (assume Hb, Hb)
|
||
|
||
theorem resolve_left {a b : Bool} (H1 : a ∨ b) (H2 : ¬ b) : a
|
||
:= or_elim H1 (assume Ha, Ha) (assume Hb, absurd_elim a Hb H2)
|
||
|
||
theorem or_flip {a b : Bool} (H : a ∨ b) : b ∨ a
|
||
:= or_elim H (assume Ha, or_intro_right b Ha) (assume Hb, or_intro_left a Hb)
|
||
|
||
inductive eq {A : Type} (a : A) : A → Bool :=
|
||
| refl : eq a a
|
||
|
||
infix `=` 50 := eq
|
||
|
||
theorem subst {A : Type} {a b : A} {P : A → Bool} (H1 : a = b) (H2 : P a) : P b
|
||
:= eq_rec H2 H1
|
||
|
||
theorem trans {A : Type} {a b c : A} (H1 : a = b) (H2 : b = c) : a = c
|
||
:= subst H2 H1
|
||
|
||
calc_subst subst
|
||
calc_refl refl
|
||
calc_trans trans
|
||
|
||
theorem symm {A : Type} {a b : A} (H : a = b) : b = a
|
||
:= subst H (refl a)
|
||
|
||
theorem congr1 {A : Type} {B : A → Type} {f g : Π x, B x} (H : f = g) (a : A) : f a = g a
|
||
:= subst H (refl (f a))
|
||
|
||
theorem congr2 {A B : Type} {a b : A} (f : A → B) (H : a = b) : f a = f b
|
||
:= subst H (refl (f a))
|
||
|
||
theorem equal_f {A : Type} {B : A → Type} {f g : Π x, B x} (H : f = g) : ∀ x, f x = g x
|
||
:= take x, congr1 H x
|
||
|
||
theorem not_congr {a b : Bool} (H : a = b) : (¬ a) = (¬ b)
|
||
:= congr2 not H
|
||
|
||
theorem eqmp {a b : Bool} (H1 : a = b) (H2 : a) : b
|
||
:= subst H1 H2
|
||
|
||
infixl `<|` 100 := eqmp
|
||
infixl `◂` 100 := eqmp
|
||
|
||
theorem eqmpr {a b : Bool} (H1 : a = b) (H2 : b) : a
|
||
:= (symm H1) ◂ H2
|
||
|
||
theorem eqt_elim {a : Bool} (H : a = true) : a
|
||
:= (symm H) ◂ trivial
|
||
|
||
theorem eqf_elim {a : Bool} (H : a = false) : ¬ a
|
||
:= not_intro (assume Ha : a, H ◂ Ha)
|
||
|
||
theorem imp_trans {a b c : Bool} (H1 : a → b) (H2 : b → c) : a → c
|
||
:= assume Ha, H2 (H1 Ha)
|
||
|
||
theorem imp_eq_trans {a b c : Bool} (H1 : a → b) (H2 : b = c) : a → c
|
||
:= assume Ha, H2 ◂ (H1 Ha)
|
||
|
||
theorem eq_imp_trans {a b c : Bool} (H1 : a = b) (H2 : b → c) : a → c
|
||
:= assume Ha, H2 (H1 ◂ Ha)
|
||
|
||
definition ne {A : Type} (a b : A) := ¬ (a = b)
|
||
infix `≠` 50 := ne
|
||
|
||
theorem ne_intro {A : Type} {a b : A} (H : a = b → false) : a ≠ b
|
||
:= H
|
||
|
||
theorem ne_elim {A : Type} {a b : A} (H1 : a ≠ b) (H2 : a = b) : false
|
||
:= H1 H2
|
||
|
||
theorem ne_irrefl {A : Type} {a : A} (H : a ≠ a) : false
|
||
:= H (refl a)
|
||
|
||
theorem ne_symm {A : Type} {a b : A} (H : a ≠ b) : b ≠ a
|
||
:= assume H1 : b = a, H (symm H1)
|
||
|
||
theorem eq_ne_trans {A : Type} {a b c : A} (H1 : a = b) (H2 : b ≠ c) : a ≠ c
|
||
:= subst (symm H1) H2
|
||
|
||
theorem ne_eq_trans {A : Type} {a b c : A} (H1 : a ≠ b) (H2 : b = c) : a ≠ c
|
||
:= subst H2 H1
|
||
|
||
calc_trans eq_ne_trans
|
||
calc_trans ne_eq_trans
|
||
|
||
definition iff (a b : Bool) := (a → b) ∧ (b → a)
|
||
infix `↔` 50 := iff
|
||
|
||
theorem iff_intro {a b : Bool} (H1 : a → b) (H2 : b → a) : a ↔ b
|
||
:= and_intro H1 H2
|
||
|
||
theorem iff_elim {a b c : Bool} (H1 : (a → b) → (b → a) → c) (H2 : a ↔ b) : c
|
||
:= and_rec H1 H2
|
||
|
||
theorem iff_elim_left {a b : Bool} (H : a ↔ b) : a → b
|
||
:= iff_elim (assume H1 H2, H1) H
|
||
|
||
theorem iff_elim_right {a b : Bool} (H : a ↔ b) : b → a
|
||
:= iff_elim (assume H1 H2, H2) H
|
||
|
||
theorem iff_mp_left {a b : Bool} (H1 : a ↔ b) (H2 : a) : b
|
||
:= (iff_elim_left H1) H2
|
||
|
||
theorem iff_mp_right {a b : Bool} (H1 : a ↔ b) (H2 : b) : a
|
||
:= (iff_elim_right H1) H2
|
||
|
||
inductive Exists {A : Type} (P : A → Bool) : Bool :=
|
||
| exists_intro : ∀ (a : A), P a → Exists P
|
||
|
||
notation `∃` binders `,` r:(scoped P, Exists P) := r
|
||
|
||
theorem exists_elim {A : Type} {P : A → Bool} {B : Bool} (H1 : ∃ x : A, P x) (H2 : ∀ (a : A) (H : P a), B) : B
|
||
:= Exists_rec H2 H1
|
||
|
||
definition inhabited (A : Type) := ∃ x : A, true
|
||
|
||
theorem inhabited_intro {A : Type} (a : A) : inhabited A
|
||
:= exists_intro a trivial
|
||
|
||
theorem inhabited_elim {A : Type} {B : Bool} (H1 : inhabited A) (H2 : A → B) : B
|
||
:= exists_elim H1 (λ (a : A) (H : true), H2 a)
|
||
|
||
theorem inhabited_Bool : inhabited Bool
|
||
:= inhabited_intro true
|
||
|
||
theorem inhabited_fun (A : Type) {B : Type} (H : inhabited B) : inhabited (A → B)
|
||
:= inhabited_elim H (take (b : B), inhabited_intro (λ a : A, b))
|
||
|
||
definition cast {A B : Type} (H : A = B) (a : A) : B
|
||
:= eq_rec a H
|
||
|
||
theorem cast_refl {A : Type} (a : A) : cast (refl A) a = a
|
||
:= refl (cast (refl A) a)
|
||
|
||
theorem cast_eq {A : Type} (H : A = A) (a : A) : cast H a = a
|
||
:= calc cast H a = cast (refl A) a : refl (cast H a) -- by proof irrelevance
|
||
... = a : cast_refl a
|
||
|
||
definition heq {A B : Type} (a : A) (b : B) := ∃ H, cast H a = b
|
||
|
||
infixl `==` 50 := heq
|
||
|
||
theorem heq_type_eq {A B : Type} {a : A} {b : B} (H : a == b) : A = B
|
||
:= exists_elim H (λ H Hw, H)
|
||
|
||
theorem to_heq {A : Type} {a b : A} (H : a = b) : a == b
|
||
:= exists_intro (refl A) (trans (cast_refl a) H)
|
||
|
||
theorem to_eq {A : Type} {a b : A} (H : a == b) : a = b
|
||
:= exists_elim H (λ (H : A = A) (Hw : cast H a = b),
|
||
calc a = cast H a : symm (cast_eq H a)
|
||
... = b : Hw)
|
||
|
||
theorem heq_refl {A : Type} (a : A) : a == a
|
||
:= to_heq (refl a)
|
||
|
||
theorem heqt_elim {a : Bool} (H : a == true) : a
|
||
:= eqt_elim (to_eq H)
|