lean2/library/data/complex.lean
2015-12-05 23:50:01 -08:00

375 lines
13 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Jacob Gross. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jacob Gross, Jeremy Avigad
The complex numbers.
-/
import data.real
open real eq.ops
record complex : Type :=
(re : ) (im : )
notation `` := complex
namespace complex
variables (u w z : )
variable n :
protected proposition eq {z w : } (H1 : complex.re z = complex.re w)
(H2 : complex.im z = complex.im w) : z = w :=
begin
induction z,
induction w,
rewrite [H1, H2]
end
protected proposition eta (z : ) : complex.mk (complex.re z) (complex.im z) = z :=
by cases z; exact rfl
definition of_real [coercion] (x : ) : := complex.mk x 0
definition of_rat [coercion] (q : ) : := rat.to.complex q
definition of_int [coercion] (i : ) : := int.to.complex i
definition of_nat [coercion] (n : ) : := nat.to.complex n
definition of_num [coercion] [reducible] (n : num) : := num.to.complex n
protected definition prio : num := num.pred real.prio
definition complex_has_zero [reducible] [instance] [priority complex.prio] : has_zero :=
has_zero.mk (of_nat 0)
definition complex_has_one [reducible] [instance] [priority complex.prio] : has_one :=
has_one.mk (of_nat 1)
theorem re_of_real (x : ) : re (of_real x) = x := rfl
theorem im_of_real (x : ) : im (of_real x) = 0 := rfl
protected definition add (z w : ) : :=
complex.mk (complex.re z + complex.re w) (complex.im z + complex.im w)
protected definition neg (z : ) : :=
complex.mk (-(re z)) (-(im z))
protected definition mul (z w : ) : :=
complex.mk
(complex.re w * complex.re z - complex.im w * complex.im z)
(complex.re w * complex.im z + complex.im w * complex.re z)
/- notation -/
definition complex_has_add [reducible] [instance] [priority complex.prio] : has_add complex :=
has_add.mk complex.add
definition complex_has_neg [reducible] [instance] [priority complex.prio] : has_neg complex :=
has_neg.mk complex.neg
definition complex_has_mul [reducible] [instance] [priority complex.prio] : has_mul complex :=
has_mul.mk complex.mul
protected theorem add_def (z w : ) :
z + w = complex.mk (complex.re z + complex.re w) (complex.im z + complex.im w) := rfl
protected theorem neg_def (z : ) : -z = complex.mk (-(re z)) (-(im z)) := rfl
protected theorem mul_def (z w : ) :
z * w = complex.mk
(complex.re w * complex.re z - complex.im w * complex.im z)
(complex.re w * complex.im z + complex.im w * complex.re z) := rfl
-- TODO: what notation should we use for i?
definition ii := complex.mk 0 1
theorem i_mul_i : ii * ii = -1 := rfl
/- basic properties -/
protected theorem add_comm (w z : ) : w + z = z + w :=
complex.eq !add.comm !add.comm
protected theorem add_assoc (w z u : ) : (w + z) + u = w + (z + u) :=
complex.eq !add.assoc !add.assoc
protected theorem add_zero (z : ) : z + 0 = z :=
complex.eq !add_zero !add_zero
protected theorem zero_add (z : ) : 0 + z = z := !complex.add_comm ▸ !complex.add_zero
definition smul (x : ) (z : ) : :=
complex.mk (x*re z) (x*im z)
protected theorem add_right_inv : z + - z = 0 :=
complex.eq !add.right_inv !add.right_inv
protected theorem add_left_inv : - z + z = 0 :=
!complex.add_comm ▸ !complex.add_right_inv
protected theorem mul_comm : w * z = z * w :=
by rewrite [*complex.mul_def, *mul.comm (re w), *mul.comm (im w), add.comm]
protected theorem one_mul : 1 * z = z :=
by krewrite [complex.mul_def, *mul_one, *mul_zero, sub_zero, zero_add, complex.eta]
protected theorem mul_one : z * 1 = z := !complex.mul_comm ▸ !complex.one_mul
protected theorem left_distrib : u * (w + z) = u * w + u * z :=
begin
rewrite [*complex.mul_def, *complex.add_def, ▸*, *right_distrib, -sub_sub, *sub_eq_add_neg],
rewrite [*add.assoc, add.left_comm (re z * im u), add.left_comm (-_)]
end
protected theorem right_distrib : (u + w) * z = u * z + w * z :=
by rewrite [*complex.mul_comm _ z, complex.left_distrib]
protected theorem mul_assoc : (u * w) * z = u * (w * z) :=
begin
rewrite [*complex.mul_def, ▸*, *sub_eq_add_neg, *left_distrib, *right_distrib, *neg_add],
rewrite [-*neg_mul_eq_neg_mul, -*neg_mul_eq_mul_neg, *add.assoc, *mul.assoc],
rewrite [add.comm (-(im z * (im w * _))), add.comm (-(im z * (im w * _))), *add.assoc]
end
theorem re_add (z w : ) : re (z + w) = re z + re w := rfl
theorem im_add (z w : ) : im (z + w) = im z + im w := rfl
/- coercions -/
theorem of_real_add (a b : ) : of_real (a + b) = of_real a + of_real b := rfl
theorem of_real_mul (a b : ) : of_real (a * b) = (of_real a) * (of_real b) :=
by rewrite [complex.mul_def, *re_of_real, *im_of_real, *mul_zero, *zero_mul, sub_zero, add_zero,
mul.comm]
theorem of_real_neg (a : ) : of_real (-a) = -(of_real a) := rfl
theorem of_real.inj {a b : } (H : of_real a = of_real b) : a = b :=
show re (of_real a) = re (of_real b), from congr_arg re H
theorem eq_of_of_real_eq_of_real {a b : } (H : of_real a = of_real b) : a = b :=
of_real.inj H
theorem of_real_eq_of_real_iff (a b : ) : of_real a = of_real b ↔ a = b :=
iff.intro eq_of_of_real_eq_of_real !congr_arg
/- make complex an instance of ring -/
protected definition comm_ring [reducible] : comm_ring complex :=
begin
fapply comm_ring.mk,
exact complex.add,
exact complex.add_assoc,
exact 0,
exact complex.zero_add,
exact complex.add_zero,
exact complex.neg,
exact complex.add_left_inv,
exact complex.add_comm,
exact complex.mul,
exact complex.mul_assoc,
exact 1,
apply complex.one_mul,
apply complex.mul_one,
apply complex.left_distrib,
apply complex.right_distrib,
apply complex.mul_comm
end
local attribute complex.comm_ring [instance]
definition complex_has_sub [reducible] [instance] [priority complex.prio] : has_sub complex :=
has_sub.mk has_sub.sub
theorem of_real_sub (x y : ) : of_real (x - y) = of_real x - of_real y :=
rfl
-- TODO: move these
private lemma eq_zero_of_mul_self_eq_zero {x : } (H : x * x = 0) : x = 0 :=
iff.mp !or_self (!eq_zero_or_eq_zero_of_mul_eq_zero H)
private lemma eq_zero_of_sum_square_eq_zero {x y : } (H : x * x + y * y = 0) : x = 0 :=
have x * x ≤ (0 : ), from calc
x * x ≤ x * x + y * y : le_add_of_nonneg_right (mul_self_nonneg y)
... = 0 : H,
eq_zero_of_mul_self_eq_zero (le.antisymm this (mul_self_nonneg x))
/- complex modulus and conjugate-/
definition cmod (z : ) : :=
(complex.re z) * (complex.re z) + (complex.im z) * (complex.im z)
theorem cmod_zero : cmod 0 = 0 := rfl
theorem cmod_of_real (x : ) : cmod x = x * x :=
by rewrite [↑cmod, re_of_real, im_of_real, mul_zero, add_zero]
theorem eq_zero_of_cmod_eq_zero {z : } (H : cmod z = 0) : z = 0 :=
have H1 : (complex.re z) * (complex.re z) + (complex.im z) * (complex.im z) = 0,
from H,
have H2 : complex.re z = 0, from eq_zero_of_sum_square_eq_zero H1,
have H3 : complex.im z = 0, from eq_zero_of_sum_square_eq_zero (!add.comm ▸ H1),
show z = 0, from complex.eq H2 H3
definition conj (z : ) : := complex.mk (complex.re z) (-(complex.im z))
theorem conj_of_real {x : } : conj (of_real x) = of_real x := rfl
theorem conj_add (z w : ) : conj (z + w) = conj z + conj w :=
by rewrite [↑conj, *complex.add_def, ▸*, neg_add]
theorem conj_mul (z w : ) : conj (z * w) = conj z * conj w :=
by rewrite [↑conj, *complex.mul_def, ▸*, neg_mul_neg, neg_add,
-neg_mul_eq_mul_neg, -neg_mul_eq_neg_mul]
theorem conj_conj (z : ) : conj (conj z) = z :=
by rewrite [↑conj, neg_neg, complex.eta]
theorem mul_conj_eq_of_real_cmod (z : ) : z * conj z = of_real (cmod z) :=
by rewrite [↑conj, ↑cmod, ↑of_real, complex.mul_def, ▸*, -*neg_mul_eq_neg_mul,
sub_neg_eq_add, mul.comm (re z) (im z), add.right_inv]
theorem cmod_conj (z : ) : cmod (conj z) = cmod z :=
begin
apply eq_of_of_real_eq_of_real,
rewrite [-*mul_conj_eq_of_real_cmod, conj_conj, mul.comm]
end
theorem cmod_mul (z w : ) : cmod (z * w) = cmod z * cmod w :=
begin
apply eq_of_of_real_eq_of_real,
rewrite [of_real_mul, -*mul_conj_eq_of_real_cmod, conj_mul, *mul.assoc, mul.left_comm w]
end
protected noncomputable definition inv (z : ) : complex := conj z * of_real (cmod z)⁻¹
protected noncomputable definition complex_has_inv [reducible] [instance] [priority complex.prio] :
has_inv complex := has_inv.mk complex.inv
protected theorem inv_def (z : ) : z⁻¹ = conj z * of_real (cmod z)⁻¹ := rfl
protected theorem inv_zero : 0⁻¹ = (0 : ) :=
by krewrite [complex.inv_def, conj_of_real, zero_mul]
theorem of_real_inv (x : ) : of_real x⁻¹ = (of_real x)⁻¹ :=
classical.by_cases
(assume H : x = 0,
by krewrite [H, inv_zero, complex.inv_zero])
(assume H : x ≠ 0,
by rewrite [complex.inv_def, cmod_of_real, conj_of_real, mul_inv_eq H H, -of_real_mul,
-mul.assoc, mul_inv_cancel H, one_mul])
noncomputable protected definition div (z w : ) : := z * w⁻¹
noncomputable definition complex_has_div [instance] [reducible] [priority complex.prio] :
has_div complex :=
has_div.mk complex.div
protected theorem div_def (z w : ) : z / w = z * w⁻¹ := rfl
theorem of_real_div (x y : ) : of_real (x / y) = of_real x / of_real y :=
have H : x / y = x * y⁻¹, from rfl,
by+ rewrite [H, complex.div_def, of_real_mul, of_real_inv]
theorem conj_inv (z : ) : (conj z)⁻¹ = conj (z⁻¹) :=
by rewrite [*complex.inv_def, conj_mul, *conj_conj, conj_of_real, cmod_conj]
protected theorem mul_inv_cancel {z : } (H : z ≠ 0) : z * z⁻¹ = 1 :=
by rewrite [complex.inv_def, -mul.assoc, mul_conj_eq_of_real_cmod, -of_real_mul,
mul_inv_cancel (assume H', H (eq_zero_of_cmod_eq_zero H'))]
protected theorem inv_mul_cancel {z : } (H : z ≠ 0) : z⁻¹ * z = 1 :=
!mul.comm ▸ complex.mul_inv_cancel H
protected noncomputable definition has_decidable_eq : decidable_eq :=
take z w, classical.prop_decidable (z = w)
protected theorem zero_ne_one : (0 : ) ≠ 1 :=
assume H, zero_ne_one (eq_of_of_real_eq_of_real H)
protected noncomputable definition discrete_field [reducible][trans_instance] :
discrete_field :=
⦃ discrete_field, complex.comm_ring,
mul_inv_cancel := @complex.mul_inv_cancel,
inv_mul_cancel := @complex.inv_mul_cancel,
zero_ne_one := complex.zero_ne_one,
inv_zero := complex.inv_zero,
has_decidable_eq := complex.has_decidable_eq
-- TODO : we still need the whole family of coercion properties, for nat, int, rat
-- coercions
theorem of_rat_eq (a : ) : of_rat a = of_real (real.of_rat a) := rfl
theorem of_int_eq (a : ) : of_int a = of_real (real.of_int a) := rfl
theorem of_nat_eq (a : ) : of_nat a = of_real (real.of_nat a) := rfl
theorem of_rat.inj {x y : } (H : of_rat x = of_rat y) : x = y :=
real.of_rat.inj (of_real.inj H)
theorem eq_of_of_rat_eq_of_rat {x y : } (H : of_rat x = of_rat y) : x = y :=
of_rat.inj H
theorem of_rat_eq_of_rat_iff (x y : ) : of_rat x = of_rat y ↔ x = y :=
iff.intro eq_of_of_rat_eq_of_rat !congr_arg
theorem of_int.inj {a b : } (H : of_int a = of_int b) : a = b :=
rat.of_int.inj (of_rat.inj H)
theorem eq_of_of_int_eq_of_int {a b : } (H : of_int a = of_int b) : a = b :=
of_int.inj H
theorem of_int_eq_of_int_iff (a b : ) : of_int a = of_int b ↔ a = b :=
iff.intro of_int.inj !congr_arg
theorem of_nat.inj {a b : } (H : of_nat a = of_nat b) : a = b :=
int.of_nat.inj (of_int.inj H)
theorem eq_of_of_nat_eq_of_nat {a b : } (H : of_nat a = of_nat b) : a = b :=
of_nat.inj H
theorem of_nat_eq_of_nat_iff (a b : ) : of_nat a = of_nat b ↔ a = b :=
iff.intro of_nat.inj !congr_arg
open rat
theorem of_rat_add (a b : ) : of_rat (a + b) = of_rat a + of_rat b :=
by rewrite [of_rat_eq]
theorem of_rat_neg (a : ) : of_rat (-a) = -of_rat a :=
by rewrite [of_rat_eq]
-- these show why we have to use krewrite in the next theorem: there are
-- two different instances of "has_mul".
-- set_option pp.notation false
-- set_option pp.coercions true
-- set_option pp.implicit true
theorem of_rat_mul (a b : ) : of_rat (a * b) = of_rat a * of_rat b :=
by krewrite [of_rat_eq, real.of_rat_mul, of_real_mul]
open int
theorem of_int_add (a b : ) : of_int (a + b) = of_int a + of_int b :=
by krewrite [of_int_eq, real.of_int_add, of_real_add]
theorem of_int_neg (a : ) : of_int (-a) = -of_int a :=
by krewrite [of_int_eq, real.of_int_neg, of_real_neg]
theorem of_int_mul (a b : ) : of_int (a * b) = of_int a * of_int b :=
by krewrite [of_int_eq, real.of_int_mul, of_real_mul]
open nat
theorem of_nat_add (a b : ) : of_nat (a + b) = of_nat a + of_nat b :=
by krewrite [of_nat_eq, real.of_nat_add, of_real_add]
theorem of_nat_mul (a b : ) : of_nat (a * b) = of_nat a * of_nat b :=
by krewrite [of_nat_eq, real.of_nat_mul, of_real_mul]
end complex