683 lines
24 KiB
C++
683 lines
24 KiB
C++
/*
|
|
Copyright (c) 2014-2015 Microsoft Corporation. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
Author: Leonardo de Moura
|
|
*/
|
|
#include "util/interrupt.h"
|
|
#include "util/flet.h"
|
|
#include "kernel/default_converter.h"
|
|
#include "kernel/instantiate.h"
|
|
#include "kernel/free_vars.h"
|
|
#include "kernel/type_checker.h"
|
|
#include "kernel/metavar.h"
|
|
#include "kernel/error_msgs.h"
|
|
|
|
namespace lean {
|
|
static expr * g_dont_care = nullptr;
|
|
|
|
default_converter::default_converter(environment const & env, bool memoize):
|
|
m_env(env), m_memoize(memoize) {
|
|
m_tc = nullptr;
|
|
m_jst = nullptr;
|
|
}
|
|
|
|
constraint default_converter::mk_eq_cnstr(expr const & lhs, expr const & rhs, justification const & j) {
|
|
return ::lean::mk_eq_cnstr(lhs, rhs, j);
|
|
}
|
|
|
|
optional<expr> default_converter::expand_macro(expr const & m) {
|
|
lean_assert(is_macro(m));
|
|
return macro_def(m).expand(m, get_extension(*m_tc));
|
|
}
|
|
|
|
/** \brief Apply normalizer extensions to \c e. */
|
|
optional<pair<expr, constraint_seq>> default_converter::norm_ext(expr const & e) {
|
|
return m_env.norm_ext()(e, get_extension(*m_tc));
|
|
}
|
|
|
|
optional<expr> default_converter::d_norm_ext(expr const & e, constraint_seq & cs) {
|
|
if (auto r = norm_ext(e)) {
|
|
cs += r->second;
|
|
return some_expr(r->first);
|
|
} else {
|
|
return none_expr();
|
|
}
|
|
}
|
|
|
|
/** \brief Return true if \c e may be reduced later after metavariables are instantiated. */
|
|
bool default_converter::is_stuck(expr const & e) {
|
|
return static_cast<bool>(m_env.norm_ext().is_stuck(e, get_extension(*m_tc)));
|
|
}
|
|
|
|
optional<expr> default_converter::is_stuck(expr const & e, type_checker & c) {
|
|
if (is_meta(e)) {
|
|
return some_expr(e);
|
|
} else {
|
|
return m_env.norm_ext().is_stuck(e, get_extension(c));
|
|
}
|
|
}
|
|
|
|
/** \brief Weak head normal form core procedure. It does not perform delta reduction nor normalization extensions. */
|
|
expr default_converter::whnf_core(expr const & e) {
|
|
check_system("whnf");
|
|
|
|
// handle easy cases
|
|
switch (e.kind()) {
|
|
case expr_kind::Var: case expr_kind::Sort: case expr_kind::Meta: case expr_kind::Local:
|
|
case expr_kind::Pi: case expr_kind::Constant: case expr_kind::Lambda:
|
|
return e;
|
|
case expr_kind::Macro: case expr_kind::App:
|
|
break;
|
|
}
|
|
|
|
// check cache
|
|
if (m_memoize) {
|
|
auto it = m_whnf_core_cache.find(e);
|
|
if (it != m_whnf_core_cache.end())
|
|
return it->second;
|
|
}
|
|
|
|
// do the actual work
|
|
expr r;
|
|
switch (e.kind()) {
|
|
case expr_kind::Var: case expr_kind::Sort: case expr_kind::Meta: case expr_kind::Local:
|
|
case expr_kind::Pi: case expr_kind::Constant: case expr_kind::Lambda:
|
|
lean_unreachable(); // LCOV_EXCL_LINE
|
|
case expr_kind::Macro:
|
|
if (auto m = expand_macro(e))
|
|
r = whnf_core(*m);
|
|
else
|
|
r = e;
|
|
break;
|
|
case expr_kind::App: {
|
|
buffer<expr> args;
|
|
expr f0 = get_app_rev_args(e, args);
|
|
expr f = whnf_core(f0);
|
|
if (is_lambda(f)) {
|
|
unsigned m = 1;
|
|
unsigned num_args = args.size();
|
|
while (is_lambda(binding_body(f)) && m < num_args) {
|
|
f = binding_body(f);
|
|
m++;
|
|
}
|
|
lean_assert(m <= num_args);
|
|
r = whnf_core(mk_rev_app(instantiate(binding_body(f), m, args.data() + (num_args - m)), num_args - m, args.data()));
|
|
} else {
|
|
r = f == f0 ? e : whnf_core(mk_rev_app(f, args.size(), args.data()));
|
|
}
|
|
break;
|
|
}}
|
|
|
|
if (m_memoize)
|
|
m_whnf_core_cache.insert(mk_pair(e, r));
|
|
return r;
|
|
}
|
|
|
|
bool default_converter::is_opaque(declaration const &) const {
|
|
return false;
|
|
}
|
|
|
|
/** \brief Expand \c e if it is non-opaque constant with weight >= w */
|
|
expr default_converter::unfold_name_core(expr e, unsigned w) {
|
|
if (is_constant(e)) {
|
|
if (auto d = m_env.find(const_name(e))) {
|
|
if (d->is_definition() && !is_opaque(*d) && d->get_weight() >= w &&
|
|
length(const_levels(e)) == d->get_num_univ_params())
|
|
return unfold_name_core(instantiate_value_univ_params(*d, const_levels(e)), w);
|
|
}
|
|
}
|
|
return e;
|
|
}
|
|
|
|
/**
|
|
\brief Expand constants and application where the function is a constant.
|
|
|
|
The unfolding is only performend if the constant corresponds to
|
|
a non-opaque definition with weight >= w.
|
|
*/
|
|
expr default_converter::unfold_names(expr const & e, unsigned w) {
|
|
if (is_app(e)) {
|
|
expr f0 = get_app_fn(e);
|
|
expr f = unfold_name_core(f0, w);
|
|
if (is_eqp(f, f0)) {
|
|
return e;
|
|
} else {
|
|
buffer<expr> args;
|
|
get_app_rev_args(e, args);
|
|
return mk_rev_app(f, args);
|
|
}
|
|
} else {
|
|
return unfold_name_core(e, w);
|
|
}
|
|
}
|
|
|
|
/**
|
|
\brief Return some definition \c d iff \c e is a target for delta-reduction, and the given definition is the one
|
|
to be expanded.
|
|
*/
|
|
optional<declaration> default_converter::is_delta(expr const & e) const {
|
|
expr const & f = get_app_fn(e);
|
|
if (is_constant(f)) {
|
|
if (auto d = m_env.find(const_name(f)))
|
|
if (d->is_definition() && !is_opaque(*d))
|
|
return d;
|
|
}
|
|
return none_declaration();
|
|
}
|
|
|
|
/**
|
|
\brief Weak head normal form core procedure that perform delta reduction for non-opaque constants with
|
|
weight greater than or equal to \c w.
|
|
|
|
This method is based on <tt>whnf_core(expr const &)</tt> and \c unfold_names.
|
|
|
|
\remark This method does not use normalization extensions attached in the environment.
|
|
*/
|
|
expr default_converter::whnf_core(expr e, unsigned w) {
|
|
while (true) {
|
|
expr new_e = unfold_names(whnf_core(e), w);
|
|
if (is_eqp(e, new_e))
|
|
return e;
|
|
e = new_e;
|
|
}
|
|
}
|
|
|
|
/** \brief Put expression \c t in weak head normal form */
|
|
pair<expr, constraint_seq> default_converter::whnf(expr const & e_prime) {
|
|
// Do not cache easy cases
|
|
switch (e_prime.kind()) {
|
|
case expr_kind::Var: case expr_kind::Sort: case expr_kind::Meta: case expr_kind::Local: case expr_kind::Pi:
|
|
return to_ecs(e_prime);
|
|
case expr_kind::Lambda: case expr_kind::Macro: case expr_kind::App: case expr_kind::Constant:
|
|
break;
|
|
}
|
|
|
|
expr e = e_prime;
|
|
// check cache
|
|
if (m_memoize) {
|
|
auto it = m_whnf_cache.find(e);
|
|
if (it != m_whnf_cache.end())
|
|
return it->second;
|
|
}
|
|
|
|
expr t = e;
|
|
constraint_seq cs;
|
|
while (true) {
|
|
expr t1 = whnf_core(t, 0);
|
|
if (auto new_t = d_norm_ext(t1, cs)) {
|
|
t = *new_t;
|
|
} else {
|
|
auto r = mk_pair(t1, cs);
|
|
if (m_memoize)
|
|
m_whnf_cache.insert(mk_pair(e, r));
|
|
return r;
|
|
}
|
|
}
|
|
}
|
|
|
|
expr default_converter::whnf(expr const & e_prime, constraint_seq & cs) {
|
|
auto r = whnf(e_prime);
|
|
cs += r.second;
|
|
return r.first;
|
|
}
|
|
|
|
/**
|
|
\brief Given lambda/Pi expressions \c t and \c s, return true iff \c t is def eq to \c s.
|
|
|
|
t and s are definitionally equal
|
|
iff
|
|
domain(t) is definitionally equal to domain(s)
|
|
and
|
|
body(t) is definitionally equal to body(s)
|
|
*/
|
|
bool default_converter::is_def_eq_binding(expr t, expr s, constraint_seq & cs) {
|
|
lean_assert(t.kind() == s.kind());
|
|
lean_assert(is_binding(t));
|
|
expr_kind k = t.kind();
|
|
buffer<expr> subst;
|
|
do {
|
|
optional<expr> var_s_type;
|
|
if (binding_domain(t) != binding_domain(s)) {
|
|
var_s_type = instantiate_rev(binding_domain(s), subst.size(), subst.data());
|
|
expr var_t_type = instantiate_rev(binding_domain(t), subst.size(), subst.data());
|
|
if (!is_def_eq(var_t_type, *var_s_type, cs))
|
|
return false;
|
|
}
|
|
if (!closed(binding_body(t)) || !closed(binding_body(s))) {
|
|
// local is used inside t or s
|
|
if (!var_s_type)
|
|
var_s_type = instantiate_rev(binding_domain(s), subst.size(), subst.data());
|
|
subst.push_back(mk_local(mk_fresh_name(*m_tc), binding_name(s), *var_s_type, binding_info(s)));
|
|
} else {
|
|
subst.push_back(*g_dont_care); // don't care
|
|
}
|
|
t = binding_body(t);
|
|
s = binding_body(s);
|
|
} while (t.kind() == k && s.kind() == k);
|
|
return is_def_eq(instantiate_rev(t, subst.size(), subst.data()),
|
|
instantiate_rev(s, subst.size(), subst.data()), cs);
|
|
}
|
|
|
|
bool default_converter::is_def_eq(level const & l1, level const & l2, constraint_seq & cs) {
|
|
if (is_equivalent(l1, l2)) {
|
|
return true;
|
|
} else if (has_meta(l1) || has_meta(l2)) {
|
|
cs += constraint_seq(mk_level_eq_cnstr(l1, l2, m_jst->get()));
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool default_converter::is_def_eq(levels const & ls1, levels const & ls2, constraint_seq & cs) {
|
|
if (is_nil(ls1) && is_nil(ls2)) {
|
|
return true;
|
|
} else if (!is_nil(ls1) && !is_nil(ls2)) {
|
|
return
|
|
is_def_eq(head(ls1), head(ls2), cs) &&
|
|
is_def_eq(tail(ls1), tail(ls2), cs);
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/** \brief This is an auxiliary method for is_def_eq. It handles the "easy cases". */
|
|
lbool default_converter::quick_is_def_eq(expr const & t, expr const & s, constraint_seq & cs, bool use_hash) {
|
|
if (m_eqv_manager.is_equiv(t, s, use_hash))
|
|
return l_true;
|
|
if (is_meta(t) || is_meta(s)) {
|
|
// if t or s is a metavariable (or the application of a metavariable), then add constraint
|
|
cs += constraint_seq(mk_eq_cnstr(t, s, m_jst->get()));
|
|
return l_true;
|
|
}
|
|
if (t.kind() == s.kind()) {
|
|
switch (t.kind()) {
|
|
case expr_kind::Lambda: case expr_kind::Pi:
|
|
return to_lbool(is_def_eq_binding(t, s, cs));
|
|
case expr_kind::Sort:
|
|
return to_lbool(is_def_eq(sort_level(t), sort_level(s), cs));
|
|
case expr_kind::Meta:
|
|
lean_unreachable(); // LCOV_EXCL_LINE
|
|
case expr_kind::Var: case expr_kind::Local: case expr_kind::App:
|
|
case expr_kind::Constant: case expr_kind::Macro:
|
|
// We do not handle these cases in this method.
|
|
break;
|
|
}
|
|
}
|
|
return l_undef; // This is not an "easy case"
|
|
}
|
|
|
|
/**
|
|
\brief Return true if arguments of \c t are definitionally equal to arguments of \c s.
|
|
This method is used to implement an optimization in the method \c is_def_eq.
|
|
*/
|
|
bool default_converter::is_def_eq_args(expr t, expr s, constraint_seq & cs) {
|
|
while (is_app(t) && is_app(s)) {
|
|
if (!is_def_eq(app_arg(t), app_arg(s), cs))
|
|
return false;
|
|
t = app_fn(t);
|
|
s = app_fn(s);
|
|
}
|
|
return !is_app(t) && !is_app(s);
|
|
}
|
|
|
|
/** \brief Return true iff t is a constant named f_name or an application of the form (f_name a_1 ... a_k) */
|
|
bool default_converter::is_app_of(expr t, name const & f_name) {
|
|
t = get_app_fn(t);
|
|
return is_constant(t) && const_name(t) == f_name;
|
|
}
|
|
|
|
/** \brief Try to solve (fun (x : A), B) =?= s by trying eta-expansion on s */
|
|
bool default_converter::try_eta_expansion_core(expr const & t, expr const & s, constraint_seq & cs) {
|
|
if (is_lambda(t) && !is_lambda(s)) {
|
|
auto tcs = infer_type(s);
|
|
auto wcs = whnf(tcs.first);
|
|
expr s_type = wcs.first;
|
|
constraint_seq aux_cs;
|
|
if (is_pi(s_type)) {
|
|
// do nothing ... s_type is already a Pi
|
|
} else if (auto m = m_tc->is_stuck(s_type)) {
|
|
name_generator ngen = m_tc->mk_ngen();
|
|
expr r = mk_pi_for(ngen, *m);
|
|
justification j = mk_justification(s, [=](formatter const & fmt, substitution const & subst, bool) {
|
|
return pp_function_expected(fmt, substitution(subst).instantiate(s));
|
|
});
|
|
aux_cs += mk_eq_cnstr(s_type, r, j);
|
|
s_type = r;
|
|
} else {
|
|
return false;
|
|
}
|
|
expr new_s = mk_lambda(binding_name(s_type), binding_domain(s_type), mk_app(s, Var(0)), binding_info(s_type));
|
|
auto dcs = is_def_eq(t, new_s);
|
|
if (!dcs.first) {
|
|
return false;
|
|
}
|
|
cs += dcs.second + wcs.second + tcs.second + aux_cs;
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/** \brief Return true iff \c t and \c s are definitionally equal.
|
|
|
|
\remark Store in \c cs any generated constraints.
|
|
*/
|
|
bool default_converter::is_def_eq(expr const & t, expr const & s, constraint_seq & cs) {
|
|
auto bcs = is_def_eq(t, s);
|
|
if (bcs.first) {
|
|
cs += bcs.second;
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/** \brief Return true if \c t and \c s are definitionally equal because they are applications of the form
|
|
<tt>(f a_1 ... a_n)</tt> <tt>(g b_1 ... b_n)</tt>, and \c f and \c g are definitionally equal, and
|
|
\c a_i and \c b_i are also definitionally equal for every 1 <= i <= n.
|
|
Return false otherwise.
|
|
|
|
\remark Store in \c cs any generated constraints
|
|
*/
|
|
bool default_converter::is_def_eq_app(expr const & t, expr const & s, constraint_seq & cs) {
|
|
if (is_app(t) && is_app(s)) {
|
|
buffer<expr> t_args;
|
|
buffer<expr> s_args;
|
|
expr t_fn = get_app_args(t, t_args);
|
|
expr s_fn = get_app_args(s, s_args);
|
|
constraint_seq cs_prime = cs;
|
|
if (is_def_eq(t_fn, s_fn, cs_prime) && t_args.size() == s_args.size()) {
|
|
unsigned i = 0;
|
|
for (; i < t_args.size(); i++) {
|
|
if (!is_def_eq(t_args[i], s_args[i], cs_prime))
|
|
break;
|
|
}
|
|
if (i == t_args.size()) {
|
|
cs = cs_prime;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/** \brief remark: is_prop returns true only if \c e is reducible to Prop.
|
|
If \c e contains metavariables, then reduction can get stuck, and is_prop will return false.
|
|
*/
|
|
pair<bool, constraint_seq> default_converter::is_prop(expr const & e) {
|
|
auto tcs = infer_type(e);
|
|
auto wcs = whnf(tcs.first);
|
|
if (wcs.first == mk_Prop())
|
|
return to_bcs(true, wcs.second + tcs.second);
|
|
else
|
|
return to_bcs(false);
|
|
}
|
|
|
|
/** \brief Return true if \c t and \c s are definitionally equal due to proof irrelevant.
|
|
Return false otherwise.
|
|
|
|
\remark Store in \c cs any generated constraints.
|
|
*/
|
|
bool default_converter::is_def_eq_proof_irrel(expr const & t, expr const & s, constraint_seq & cs) {
|
|
if (!m_env.prop_proof_irrel())
|
|
return false;
|
|
// Proof irrelevance support for Prop (aka Type.{0})
|
|
auto tcs = infer_type(t);
|
|
auto scs = infer_type(s);
|
|
expr t_type = tcs.first;
|
|
expr s_type = scs.first;
|
|
auto pcs = is_prop(t_type);
|
|
if (pcs.first) {
|
|
auto dcs = is_def_eq(t_type, s_type);
|
|
if (dcs.first) {
|
|
cs += dcs.second + scs.second + pcs.second + tcs.second;
|
|
return true;
|
|
}
|
|
} else {
|
|
// If we can't stablish whether t_type is Prop, we try s_type.
|
|
pcs = is_prop(s_type);
|
|
if (pcs.first) {
|
|
auto dcs = is_def_eq(t_type, s_type);
|
|
if (dcs.first) {
|
|
cs += dcs.second + scs.second + pcs.second + tcs.second;
|
|
return true;
|
|
}
|
|
}
|
|
// This procedure will miss the case where s_type and t_type cannot be reduced to Prop
|
|
// because they contain metavariables.
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool default_converter::failed_before(expr const & t, expr const & s) const {
|
|
if (t.hash() < s.hash()) {
|
|
return m_failure_cache.find(mk_pair(t, s)) != m_failure_cache.end();
|
|
} else if (t.hash() > s.hash()) {
|
|
return m_failure_cache.find(mk_pair(s, t)) != m_failure_cache.end();
|
|
} else {
|
|
return
|
|
m_failure_cache.find(mk_pair(t, s)) != m_failure_cache.end() ||
|
|
m_failure_cache.find(mk_pair(s, t)) != m_failure_cache.end();
|
|
}
|
|
}
|
|
|
|
void default_converter::cache_failure(expr const & t, expr const & s) {
|
|
if (t.hash() <= s.hash())
|
|
m_failure_cache.insert(mk_pair(t, s));
|
|
else
|
|
m_failure_cache.insert(mk_pair(s, t));
|
|
}
|
|
|
|
/**
|
|
\brief Perform one lazy delta-reduction step.
|
|
Return
|
|
- l_true if t_n and s_n are definitionally equal.
|
|
- l_false if they are not definitionally equal.
|
|
- l_undef it the step did not manage to establish whether they are definitionally equal or not.
|
|
|
|
\remark t_n, s_n and cs are updated.
|
|
*/
|
|
auto default_converter::lazy_delta_reduction_step(expr & t_n, expr & s_n, constraint_seq & cs) -> reduction_status {
|
|
auto d_t = is_delta(t_n);
|
|
auto d_s = is_delta(s_n);
|
|
if (!d_t && !d_s) {
|
|
return reduction_status::DefUnknown;
|
|
} else if (d_t && !d_s) {
|
|
t_n = whnf_core(unfold_names(t_n, 0));
|
|
} else if (!d_t && d_s) {
|
|
s_n = whnf_core(unfold_names(s_n, 0));
|
|
} else if (d_t->get_weight() > d_s->get_weight()) {
|
|
t_n = whnf_core(unfold_names(t_n, d_s->get_weight() + 1));
|
|
} else if (d_t->get_weight() < d_s->get_weight()) {
|
|
s_n = whnf_core(unfold_names(s_n, d_t->get_weight() + 1));
|
|
} else {
|
|
lean_assert(d_t && d_s && d_t->get_weight() == d_s->get_weight());
|
|
if (is_app(t_n) && is_app(s_n) && is_eqp(*d_t, *d_s)) {
|
|
// If t_n and s_n are both applications of the same (non-opaque) definition,
|
|
if (has_expr_metavar(t_n) || has_expr_metavar(s_n)) {
|
|
// We let the unifier deal with cases such as
|
|
// (f ...) =?= (f ...)
|
|
// when t_n or s_n contains metavariables
|
|
return reduction_status::DefUnknown;
|
|
} else {
|
|
// Optimization:
|
|
// We try to check if their arguments are definitionally equal.
|
|
// If they are, then t_n and s_n must be definitionally equal, and we can
|
|
// skip the delta-reduction step.
|
|
// If the flag use_conv_opt() is not true, then we skip this optimization
|
|
constraint_seq tmp_cs;
|
|
if (!is_opaque(*d_t) && d_t->use_conv_opt() && !failed_before(t_n, s_n)) {
|
|
if (is_def_eq(const_levels(get_app_fn(t_n)), const_levels(get_app_fn(s_n)), tmp_cs) &&
|
|
is_def_eq_args(t_n, s_n, tmp_cs)) {
|
|
cs += tmp_cs;
|
|
return reduction_status::DefEqual;
|
|
} else {
|
|
cache_failure(t_n, s_n);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
t_n = whnf_core(unfold_names(t_n, d_t->get_weight() - 1));
|
|
s_n = whnf_core(unfold_names(s_n, d_s->get_weight() - 1));
|
|
}
|
|
switch (quick_is_def_eq(t_n, s_n, cs)) {
|
|
case l_true: return reduction_status::DefEqual;
|
|
case l_false: return reduction_status::DefDiff;
|
|
case l_undef: return reduction_status::Continue;
|
|
}
|
|
lean_unreachable();
|
|
}
|
|
|
|
lbool default_converter::lazy_delta_reduction(expr & t_n, expr & s_n, constraint_seq & cs) {
|
|
while (true) {
|
|
switch (lazy_delta_reduction_step(t_n, s_n, cs)) {
|
|
case reduction_status::Continue: break;
|
|
case reduction_status::DefUnknown: return l_undef;
|
|
case reduction_status::DefEqual: return l_true;
|
|
case reduction_status::DefDiff: return l_false;
|
|
}
|
|
}
|
|
}
|
|
|
|
auto default_converter::ext_reduction_step(expr & t_n, expr & s_n, constraint_seq & cs) -> reduction_status {
|
|
auto new_t_n = d_norm_ext(t_n, cs);
|
|
auto new_s_n = d_norm_ext(s_n, cs);
|
|
if (!new_t_n && !new_s_n)
|
|
return reduction_status::DefUnknown;
|
|
if (new_t_n)
|
|
t_n = whnf_core(*new_t_n);
|
|
if (new_s_n)
|
|
s_n = whnf_core(*new_s_n);
|
|
switch (quick_is_def_eq(t_n, s_n, cs)) {
|
|
case l_true: return reduction_status::DefEqual;
|
|
case l_false: return reduction_status::DefDiff;
|
|
case l_undef: return reduction_status::Continue;
|
|
}
|
|
lean_unreachable();
|
|
}
|
|
|
|
// Apply lazy delta-reduction and then normalizer extensions
|
|
lbool default_converter::reduce_def_eq(expr & t_n, expr & s_n, constraint_seq & cs) {
|
|
while (true) {
|
|
// first, keep applying lazy delta-reduction while applicable
|
|
lbool r = lazy_delta_reduction(t_n, s_n, cs);
|
|
if (r != l_undef) return r;
|
|
|
|
// try normalizer extensions
|
|
switch (ext_reduction_step(t_n, s_n, cs)) {
|
|
case reduction_status::Continue: break;
|
|
case reduction_status::DefUnknown: return l_undef;
|
|
case reduction_status::DefEqual: return l_true;
|
|
case reduction_status::DefDiff: return l_false;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool default_converter::postpone_is_def_eq(expr const & t, expr const & s) {
|
|
if (has_expr_metavar(t) || has_expr_metavar(s)) {
|
|
optional<declaration> d_t = is_delta(t);
|
|
optional<declaration> d_s = is_delta(s);
|
|
if (d_t && d_s && is_eqp(*d_t, *d_s))
|
|
return true;
|
|
else if (is_stuck(t) && is_stuck(s))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/** \brief Return true if we should try proof irrelevance eagerly.
|
|
\remark: We do it whenever t and s do not contain metavariables and one of them is a theorem application.
|
|
*/
|
|
static bool try_eager_proof_irrel(environment const & env, expr const & t, expr const & s) {
|
|
if (!env.prop_proof_irrel())
|
|
return false;
|
|
if (has_expr_metavar(t) || has_expr_metavar(s))
|
|
return false;
|
|
expr const & f_t = get_app_fn(t);
|
|
if (is_constant(f_t) && env.get(const_name(f_t)).is_theorem())
|
|
return true;
|
|
expr const & f_s = get_app_fn(s);
|
|
return is_constant(f_s) && env.get(const_name(f_s)).is_theorem();
|
|
}
|
|
|
|
pair<bool, constraint_seq> default_converter::is_def_eq_core(expr const & t, expr const & s) {
|
|
check_system("is_definitionally_equal");
|
|
constraint_seq cs;
|
|
bool use_hash = true;
|
|
lbool r = quick_is_def_eq(t, s, cs, use_hash);
|
|
if (r != l_undef) return to_bcs(r == l_true, cs);
|
|
|
|
// apply whnf (without using delta-reduction or normalizer extensions)
|
|
expr t_n = whnf_core(t);
|
|
expr s_n = whnf_core(s);
|
|
|
|
constraint_seq pi_cs_1;
|
|
bool eager_proof_irrel = try_eager_proof_irrel(m_env, t, s);
|
|
if (eager_proof_irrel && is_def_eq_proof_irrel(t, s, pi_cs_1))
|
|
return to_bcs(true, pi_cs_1);
|
|
|
|
if (!is_eqp(t_n, t) || !is_eqp(s_n, s)) {
|
|
r = quick_is_def_eq(t_n, s_n, cs);
|
|
if (r != l_undef) return to_bcs(r == l_true, cs);
|
|
}
|
|
|
|
r = reduce_def_eq(t_n, s_n, cs);
|
|
if (r != l_undef) return to_bcs(r == l_true, cs);
|
|
|
|
if (is_constant(t_n) && is_constant(s_n) && const_name(t_n) == const_name(s_n) &&
|
|
is_def_eq(const_levels(t_n), const_levels(s_n), cs))
|
|
return to_bcs(true, cs);
|
|
|
|
if (is_local(t_n) && is_local(s_n) && mlocal_name(t_n) == mlocal_name(s_n))
|
|
return to_bcs(true, cs);
|
|
|
|
bool postpone = postpone_is_def_eq(t_n, s_n);
|
|
|
|
// At this point, t_n and s_n are in weak head normal form (modulo meta-variables and proof irrelevance)
|
|
if (!postpone && is_def_eq_app(t_n, s_n, cs))
|
|
return to_bcs(true, cs);
|
|
|
|
if (try_eta_expansion(t_n, s_n, cs))
|
|
return to_bcs(true, cs);
|
|
|
|
constraint_seq pi_cs_2;
|
|
if (!eager_proof_irrel && is_def_eq_proof_irrel(t, s, pi_cs_2))
|
|
return to_bcs(true, pi_cs_2);
|
|
|
|
if (is_stuck(t_n) || is_stuck(s_n) || postpone) {
|
|
cs += constraint_seq(mk_eq_cnstr(t_n, s_n, m_jst->get()));
|
|
return to_bcs(true, cs);
|
|
}
|
|
|
|
return to_bcs(false);
|
|
}
|
|
|
|
pair<bool, constraint_seq> default_converter::is_def_eq(expr const & t, expr const & s) {
|
|
auto r = is_def_eq_core(t, s);
|
|
if (r.first && !r.second)
|
|
m_eqv_manager.add_equiv(t, s);
|
|
return r;
|
|
}
|
|
|
|
/** Return true iff t is definitionally equal to s. */
|
|
pair<bool, constraint_seq> default_converter::is_def_eq(expr const & t, expr const & s, type_checker & c, delayed_justification & jst) {
|
|
flet<type_checker*> set_tc(m_tc, &c);
|
|
flet<delayed_justification*> set_js(m_jst, &jst);
|
|
return is_def_eq(t, s);
|
|
}
|
|
|
|
pair<expr, constraint_seq> default_converter::whnf(expr const & e, type_checker & c) {
|
|
flet<type_checker*> set_tc(m_tc, &c);
|
|
return whnf(e);
|
|
}
|
|
|
|
void initialize_default_converter() {
|
|
g_dont_care = new expr(Const("dontcare"));
|
|
}
|
|
|
|
void finalize_default_converter() {
|
|
delete g_dont_care;
|
|
}
|
|
}
|