lean2/src/util/numerics/zpz.h
Leonardo de Moura f1d9312521 feat(numerics/zpz): add numeric_traits for zpz numerals
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2013-10-18 14:41:18 -07:00

118 lines
5.5 KiB
C++

/*
Copyright (c) 2013 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#include <algorithm>
#include "util/debug.h"
#include "util/int64.h"
#include "util/numerics/remainder.h"
#include "util/numerics/primes.h"
#include "util/numerics/power.h"
#include "util/numerics/numeric_traits.h"
namespace lean {
/**
\brief The Z/pZ field (the set of integers modulo a prime p).
We use machine integers to represent the values. That is, we only
consider primes < 2^32 - 1.
The values are encoded as a pair (value, p). We want to be able to
dynamically change the prime p. This feature is needed when
implementing some algorithms based on modular arithmetic.
*/
class zpz {
unsigned m_value;
unsigned m_p;
bool is_normalized() const { return m_value < m_p; }
void normalize() { m_value %= m_p; }
public:
zpz():m_value(0), m_p(2) {}
zpz(unsigned v, unsigned p):m_value(v), m_p(p) { lean_assert(is_prime(p)); }
unsigned p() { return m_p; }
unsigned hash() const { return m_value; }
unsigned get_unsigned_int() const { return m_value; }
void set_p(unsigned p) { lean_assert(is_prime(p)); m_p = p; normalize(); }
friend void swap(zpz & a, zpz & b) { std::swap(a.m_value, b.m_value); std::swap(a.m_p, b.m_p); }
friend bool operator==(zpz const & a, zpz const & b) { return a.m_value == b.m_value; }
friend bool operator!=(zpz const & a, zpz const & b) { return !(a == b); }
friend bool operator<(zpz const & a, zpz const & b) { return a.m_value < b.m_value; }
friend bool operator>(zpz const & a, zpz const & b) { return a.m_value > b.m_value; }
friend bool operator<=(zpz const & a, zpz const & b) { return a.m_value <= b.m_value; }
friend bool operator>=(zpz const & a, zpz const & b) { return a.m_value >= b.m_value; }
friend bool operator==(zpz const & a, unsigned b) { return a.m_value == b; }
friend bool operator!=(zpz const & a, unsigned b) { return !(a == b); }
friend bool operator<(zpz const & a, unsigned b) { return a.m_value < b; }
friend bool operator>(zpz const & a, unsigned b) { return a.m_value > b; }
friend bool operator<=(zpz const & a, unsigned b) { return a.m_value <= b; }
friend bool operator>=(zpz const & a, unsigned b) { return a.m_value >= b; }
friend bool operator==(unsigned a, zpz const & b) { return a == b.m_value; }
friend bool operator!=(unsigned a, zpz const & b) { return !(a == b); }
friend bool operator<(unsigned a, zpz const & b) { return a < b.m_value; }
friend bool operator>(unsigned a, zpz const & b) { return a > b.m_value; }
friend bool operator<=(unsigned a, zpz const & b) { return a <= b.m_value; }
friend bool operator>=(unsigned a, zpz const & b) { return a >= b.m_value; }
zpz & operator=(zpz const & v) { m_value = v.m_value; m_p = v.m_p; lean_assert(is_normalized()); return *this; }
zpz & operator=(unsigned v) { m_value = v; normalize(); return *this; }
zpz & operator+=(unsigned v) { m_value = (static_cast<uint64>(m_value) + static_cast<uint64>(v)) % m_p; return *this; }
zpz & operator+=(zpz const & v) { return operator+=(v.m_value); }
zpz & operator*=(unsigned v) { m_value = (static_cast<uint64>(m_value) * static_cast<uint64>(v)) % m_p; return *this; }
zpz & operator*=(zpz const & v) { return operator*=(v.m_value); }
zpz & operator-=(unsigned v) { m_value = remainder(static_cast<int64>(m_value) - static_cast<int64>(v), static_cast<int64>(m_p)); return *this; }
zpz & operator-=(zpz const & v) { return operator-=(v.m_value); }
zpz & operator++() { m_value++; if (m_value == m_p) m_value = 0; return *this; }
zpz & operator--() { if (m_value == 0) m_value = m_p - 1; else m_value--; return *this; }
zpz operator++(int) { zpz tmp(*this); operator++(); return tmp; }
zpz operator--(int) { zpz tmp(*this); operator--(); return tmp; }
void inv();
void neg() { m_value = remainder(-static_cast<int64>(m_value), static_cast<int64>(m_p)); }
zpz & operator/=(zpz v) { v.inv(); return operator*=(v); return *this; }
zpz & operator/=(unsigned v) { return operator/=(zpz(v, m_p)); }
friend zpz operator+(zpz a, zpz const & b) { return a += b; }
friend zpz operator+(zpz a, unsigned b) { return a += b; }
friend zpz operator+(unsigned a, zpz b) { return b += a; }
friend zpz operator-(zpz a, zpz const & b) { return a -= b; }
friend zpz operator-(zpz a, unsigned b) { return a -= b; }
friend zpz operator-(unsigned a, zpz b) { b.neg(); return b += a; }
friend zpz operator*(zpz a, zpz const & b) { return a *= b; }
friend zpz operator*(zpz a, unsigned b) { return a *= b; }
friend zpz operator*(unsigned a, zpz b) { return b *= a; }
friend zpz operator/(zpz a, zpz const & b) { return a /= b; }
friend zpz operator/(zpz a, unsigned b) { return a /= b; }
friend zpz operator/(unsigned a, zpz b) { b.inv(); return b *= a; }
friend std::ostream & operator<<(std::ostream & out, zpz const & z) { out << z.m_value; return out; }
};
template<>
class numeric_traits<zpz> {
public:
static bool precise() { return true; }
static bool is_zero(zpz const & v) { return v == 0; }
static bool is_pos(zpz const & v) { return v > 0; }
static bool is_neg(zpz const & ) { return false; }
static void set_rounding(bool ) {}
static void neg(zpz & v) { v.neg(); }
static void reset(zpz & v) { v = 0; }
// v <- v^k
static void power(zpz & v, unsigned k) { v = lean::power(v, k); }
static zpz const & zero();
};
}