lean2/library/data/empty.lean
2014-11-30 20:34:12 -08:00

38 lines
1.4 KiB
Text

-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Jeremy Avigad, Floris van Doorn
-- Empty type
-- ----------
import logic.cast logic.subsingleton
namespace empty
protected theorem elim (A : Type) (H : empty) : A :=
rec (λe, A) H
protected theorem subsingleton [instance] : subsingleton empty :=
subsingleton.intro (λ a b, !elim a)
end empty
protected definition empty.has_decidable_eq [instance] : decidable_eq empty :=
take (a b : empty), decidable.inl (!empty.elim a)
definition tneg.tneg (A : Type) := A → empty
prefix `~` := tneg.tneg
namespace tneg
variables {A B : Type}
protected definition intro (H : A → empty) : ~A := H
protected definition elim (H1 : ~A) (H2 : A) : empty := H1 H2
protected definition empty : ~empty := λH : empty, H
definition tabsurd (H1 : A) (H2 : ~A) : B := !empty.elim (H2 H1)
definition tneg_tneg_intro (H : A) : ~~A := λH2 : ~A, tneg.elim H2 H
definition tmt (H1 : A → B) (H2 : ~B) : ~A := λHA : A, tabsurd (H1 HA) H2
definition tneg_pi_left {B : A → Type} (H : ~Πa, B a) : ~~A :=
λHnA : ~A, tneg.elim H (λHA : A, tabsurd HA HnA)
definition tneg_function_right (H : ~(A → B)) : ~B :=
λHB : B, tneg.elim H (λHA : A, HB)
end tneg