83 lines
3.3 KiB
Text
83 lines
3.3 KiB
Text
/-
|
||
Copyright (c) 2016 Jakob von Raumer. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Jakob von Raumer
|
||
|
||
The Smash Product of Types
|
||
-/
|
||
|
||
import hit.pushout .wedge .cofiber .susp .sphere
|
||
|
||
open eq pushout prod pointed Pointed is_trunc
|
||
|
||
definition product_of_wedge [constructor] (A B : Type*) : Wedge A B →* A ×* B :=
|
||
begin
|
||
fconstructor,
|
||
intro x, induction x with [a, b], exact (a, point B), exact (point A, b),
|
||
do 2 reflexivity
|
||
end
|
||
|
||
definition Smash (A B : Type*) := Cofiber (product_of_wedge A B)
|
||
|
||
open sphere susp unit
|
||
|
||
namespace smash
|
||
|
||
protected definition prec {X Y : Type*} {P : Smash X Y → Type}
|
||
(pxy : Π x y, P (inr (x, y))) (ps : P (inl ⋆))
|
||
(px : Π x, pathover P ps (glue (inl x)) (pxy x (point Y)))
|
||
(py : Π y, pathover P ps (glue (inr y)) (pxy (point X) y))
|
||
(pg : pathover (λ x, pathover P ps (glue x) (@prod.rec X Y (λ x, P (inr x)) pxy
|
||
(pushout.elim (λ a, (a, Point Y)) (pair (Point X)) (λ x, idp) x)))
|
||
(px (Point X)) (glue ⋆) (py (Point Y))) : Π s, P s :=
|
||
begin
|
||
intro s, induction s, induction x, exact ps,
|
||
induction x with [x, y], exact pxy x y,
|
||
induction x with [x, y, u], exact px x, exact py y,
|
||
induction u, exact pg,
|
||
end
|
||
|
||
protected definition prec_on {X Y : Type*} {P : Smash X Y → Type} (s : Smash X Y)
|
||
(pxy : Π x y, P (inr (x, y))) (ps : P (inl ⋆))
|
||
(px : Π x, pathover P ps (glue (inl x)) (pxy x (point Y)))
|
||
(py : Π y, pathover P ps (glue (inr y)) (pxy (point X) y))
|
||
(pg : pathover (λ x, pathover P ps (glue x) (@prod.rec X Y (λ x, P (inr x)) pxy
|
||
(pushout.elim (λ a, (a, Point Y)) (pair (Point X)) (λ x, idp) x)))
|
||
(px (Point X)) (glue ⋆) (py (Point Y))) : P s :=
|
||
smash.prec pxy ps px py pg s
|
||
|
||
/- definition smash_bool (X : Type*) : Smash X Bool ≃* X :=
|
||
begin
|
||
fconstructor,
|
||
{ fconstructor,
|
||
{ intro x, fapply cofiber.pelim_on x, clear x, exact point X, intro p,
|
||
cases p with [x', b], cases b with [x, x'], exact point X, exact x',
|
||
clear x, intro w, induction w with [y, b], reflexivity,
|
||
cases b, reflexivity, reflexivity, esimp,
|
||
apply eq_pathover, refine !ap_constant ⬝ph _, cases x, esimp, apply hdeg_square,
|
||
apply inverse, apply concat, apply ap_compose (λ a, prod.cases_on a _),
|
||
apply concat, apply ap _ !elim_glue, reflexivity },
|
||
reflexivity },
|
||
{ fapply is_equiv.adjointify,
|
||
{ intro x, apply inr, exact pair x bool.tt },
|
||
{ intro x, reflexivity },
|
||
{ intro s, esimp, induction s,
|
||
{ cases x, apply (glue (inr bool.tt))⁻¹ },
|
||
{ cases x with [x, b], cases b,
|
||
apply inverse, apply concat, apply (glue (inl x))⁻¹, apply (glue (inr bool.tt)),
|
||
reflexivity },
|
||
{ esimp, apply eq_pathover, induction x,
|
||
esimp, apply hinverse, krewrite ap_id, apply move_bot_of_left,
|
||
krewrite con.right_inv,
|
||
refine _ ⬝hp !(ap_compose (λ a, inr (pair a _)))⁻¹,
|
||
apply transpose, apply square_of_eq_bot, rewrite [con_idp, con.left_inv],
|
||
apply inverse, apply concat, apply ap (ap _),
|
||
} } }
|
||
|
||
definition susp_equiv_circle_smash (X : Type*) : Susp X ≃* Smash (Sphere 1) X :=
|
||
begin
|
||
fconstructor,
|
||
{ fconstructor, intro x, induction x, },
|
||
end-/
|
||
|
||
end smash
|