lean2/hott/algebra/category/constructions
2015-09-28 09:09:22 -07:00
..
comma.hlean
cone.hlean feat(category.limits): prove that being complete is a mere proposition for categories 2015-09-28 09:09:22 -07:00
constructions.md
default.hlean
discrete.hlean feat(category): add limits in a category 2015-09-28 09:09:22 -07:00
finite_cats.hlean feat(category): define colimits as dual of limits 2015-09-28 09:09:22 -07:00
functor.hlean feat(category): prove that the yoneda embedding is an embedding 2015-09-11 23:35:21 -07:00
hset.hlean feat(category): define colimits as dual of limits 2015-09-28 09:09:22 -07:00
indiscrete.hlean feat(category): define terminal, initial, indiscrete and sum category 2015-09-28 09:09:21 -07:00
initial.hlean feat(category): define terminal, initial, indiscrete and sum category 2015-09-28 09:09:21 -07:00
opposite.hlean feat(category.opposite): prove that the opposite of a univalent category is univalent 2015-09-28 09:09:22 -07:00
product.hlean feat(category): add limits in a category 2015-09-28 09:09:22 -07:00
sum.hlean feat(category): define terminal, initial, indiscrete and sum category 2015-09-28 09:09:21 -07:00
terminal.hlean feat(category): define terminal, initial, indiscrete and sum category 2015-09-28 09:09:21 -07:00