61 lines
2.8 KiB
Text
61 lines
2.8 KiB
Text
/-
|
|
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
Authors: Floris van Doorn, Jakob von Raumer
|
|
|
|
Sum precategory and (TODO) category
|
|
-/
|
|
|
|
import ..category ..functor types.sum
|
|
|
|
open eq sum is_trunc functor lift
|
|
|
|
namespace category
|
|
|
|
--set_option pp.universes true
|
|
definition sum_hom.{u v w x} [unfold 5 6] {obC : Type.{u}} {obD : Type.{v}}
|
|
(C : precategory.{u w} obC) (D : precategory.{v x} obD)
|
|
: obC + obD → obC + obD → Type.{max w x} :=
|
|
sum.rec (λc, sum.rec (λc', lift (c ⟶ c')) (λd, lift empty))
|
|
(λd, sum.rec (λc, lift empty) (λd', lift (d ⟶ d')))
|
|
|
|
theorem is_hset_sum_hom {obC : Type} {obD : Type}
|
|
(C : precategory obC) (D : precategory obD) (x y : obC + obD)
|
|
: is_hset (sum_hom C D x y) :=
|
|
by induction x: induction y: esimp at *: exact _
|
|
|
|
local attribute is_hset_sum_hom [instance]
|
|
|
|
definition precategory_sum [constructor] {obC obD : Type}
|
|
(C : precategory obC) (D : precategory obD) : precategory (obC + obD) :=
|
|
precategory.mk (sum_hom C D)
|
|
(λ a b c g f, begin induction a: induction b: induction c: esimp at *;
|
|
induction f with f; induction g with g; (contradiction | exact up (g ∘ f)) end)
|
|
(λ a, by induction a: exact up id)
|
|
(λ a b c d h g f,
|
|
abstract begin induction a: induction b: induction c: induction d:
|
|
esimp at *; induction f with f; induction g with g; induction h with h;
|
|
esimp at *; try contradiction: apply ap up !assoc end end)
|
|
(λ a b f, abstract begin induction a: induction b: esimp at *;
|
|
induction f with f; esimp; try contradiction: exact ap up !id_left end end)
|
|
(λ a b f, abstract begin induction a: induction b: esimp at *;
|
|
induction f with f; esimp; try contradiction: exact ap up !id_right end end)
|
|
|
|
definition Precategory_sum [constructor] (C D : Precategory) : Precategory :=
|
|
precategory.Mk (precategory_sum C D)
|
|
|
|
infixr `+c`:27 := Precategory_sum
|
|
|
|
definition sum_functor [constructor] {C C' D D' : Precategory}
|
|
(F : C ⇒ D) (G : C' ⇒ D') : C +c C' ⇒ D +c D' :=
|
|
functor.mk (λ a, by induction a: (exact inl (F a)|exact inr (G a)))
|
|
(λ a b f, begin induction a: induction b: esimp at *;
|
|
induction f with f; esimp; try contradiction: (exact up (F f)|exact up (G f)) end)
|
|
(λ a, abstract by induction a: esimp; exact ap up !respect_id end)
|
|
(λ a b c g f, abstract begin induction a: induction b: induction c: esimp at *;
|
|
induction f with f; induction g with g; try contradiction:
|
|
esimp; exact ap up !respect_comp end end)
|
|
|
|
infixr `+f`:27 := sum_functor
|
|
|
|
end category
|