lean2/library/data/set/finite.lean
2015-08-09 22:14:25 -04:00

179 lines
7.2 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad
The notion of "finiteness" for sets. This approach is not computational: for example, just because
an element s : set A satsifies finite s doesn't mean that we can compute the cardinality. For
a computational representation, use the finset type.
-/
import data.set.function data.finset.to_set logic.choice
open nat
variable {A : Type}
namespace set
definition finite [class] (s : set A) : Prop := ∃ (s' : finset A), s = finset.to_set s'
theorem finite_finset [instance] (s : finset A) : finite (finset.to_set s) :=
exists.intro s rfl
/- to finset: casts every set to a finite set -/
noncomputable definition to_finset (s : set A) : finset A :=
if fins : finite s then some fins else finset.empty
theorem to_finset_of_not_finite {s : set A} (nfins : ¬ finite s) : to_finset s = (#finset ∅) :=
by rewrite [↑to_finset, dif_neg nfins]
theorem to_set_to_finset (s : set A) [fins : finite s] : finset.to_set (to_finset s) = s :=
by rewrite [↑to_finset, dif_pos fins]; exact eq.symm (some_spec fins)
theorem mem_to_finset_eq (a : A) (s : set A) [fins : finite s] :
(#finset a ∈ to_finset s) = (a ∈ s) :=
by rewrite [-to_set_to_finset at {2}]
theorem to_set_to_finset_of_not_finite {s : set A} (nfins : ¬ finite s) :
finset.to_set (to_finset s) = ∅ :=
by rewrite [to_finset_of_not_finite nfins]
theorem to_finset_to_set (s : finset A) : to_finset (finset.to_set s) = s :=
by rewrite [finset.eq_eq_to_set_eq, to_set_to_finset (finset.to_set s)]
theorem to_finset_eq_of_to_set_eq {s : set A} {t : finset A} (H : finset.to_set t = s) :
to_finset s = t :=
finset.eq_of_to_set_eq_to_set (by subst [s]; rewrite to_finset_to_set)
/- finiteness -/
theorem finite_of_to_set_to_finset_eq {s : set A} (H : finset.to_set (to_finset s) = s) :
finite s :=
by rewrite -H; apply finite_finset
theorem finite_empty [instance] : finite (∅ : set A) :=
by rewrite [-finset.to_set_empty]; apply finite_finset
theorem to_finset_empty : to_finset (∅ : set A) = (#finset ∅) :=
to_finset_eq_of_to_set_eq !finset.to_set_empty
theorem finite_insert [instance] (a : A) (s : set A) [fins : finite s] : finite (insert a s) :=
exists.intro (finset.insert a (to_finset s))
(by rewrite [finset.to_set_insert, to_set_to_finset])
theorem to_finset_insert (a : A) (s : set A) [fins : finite s] :
to_finset (insert a s) = finset.insert a (to_finset s) :=
by apply to_finset_eq_of_to_set_eq; rewrite [finset.to_set_insert, to_set_to_finset]
example : finite '{1, 2, 3} := _
theorem finite_union [instance] (s t : set A) [fins : finite s] [fint : finite t] :
finite (s t) :=
exists.intro (#finset to_finset s to_finset t)
(by rewrite [finset.to_set_union, *to_set_to_finset])
theorem to_finset_union (s t : set A) [fins : finite s] [fint : finite t] :
to_finset (s t) = (#finset to_finset s to_finset t) :=
by apply to_finset_eq_of_to_set_eq; rewrite [finset.to_set_union, *to_set_to_finset]
theorem finite_inter [instance] (s t : set A) [fins : finite s] [fint : finite t] :
finite (s ∩ t) :=
exists.intro (#finset to_finset s ∩ to_finset t)
(by rewrite [finset.to_set_inter, *to_set_to_finset])
theorem to_finset_inter (s t : set A) [fins : finite s] [fint : finite t] :
to_finset (s ∩ t) = (#finset to_finset s ∩ to_finset t) :=
by apply to_finset_eq_of_to_set_eq; rewrite [finset.to_set_inter, *to_set_to_finset]
theorem finite_sep [instance] (s : set A) (p : A → Prop) [h : decidable_pred p]
[fins : finite s] :
finite {x ∈ s | p x} :=
exists.intro (finset.sep p (to_finset s))
(by rewrite [finset.to_set_sep, *to_set_to_finset])
theorem to_finset_sep (s : set A) (p : A → Prop) [h : decidable_pred p] [fins : finite s] :
to_finset {x ∈ s | p x} = (#finset {x ∈ to_finset s | p x}) :=
by apply to_finset_eq_of_to_set_eq; rewrite [finset.to_set_sep, to_set_to_finset]
theorem finite_image [instance] {B : Type} [h : decidable_eq B] (f : A → B) (s : set A)
[fins : finite s] :
finite (f '[s]) :=
exists.intro (finset.image f (to_finset s))
(by rewrite [finset.to_set_image, *to_set_to_finset])
theorem to_finset_image {B : Type} [h : decidable_eq B] (f : A → B) (s : set A)
[fins : finite s] :
to_finset (f '[s]) = (#finset f '[to_finset s]) :=
by apply to_finset_eq_of_to_set_eq; rewrite [finset.to_set_image, to_set_to_finset]
theorem finite_diff [instance] (s t : set A) [fins : finite s] : finite (s \ t) :=
!finite_sep
theorem to_finset_diff (s t : set A) [fins : finite s] [fint : finite t] :
to_finset (s \ t) = (#finset to_finset s \ to_finset t) :=
by apply to_finset_eq_of_to_set_eq; rewrite [finset.to_set_diff, *to_set_to_finset]
theorem finite_subset {s t : set A} [fint : finite t] (ssubt : s ⊆ t) : finite s :=
by rewrite (eq_sep_of_subset ssubt); apply finite_sep
theorem to_finset_subset_to_finset_eq (s t : set A) [fins : finite s] [fint : finite t] :
(#finset to_finset s ⊆ to_finset t) = (s ⊆ t) :=
by rewrite [finset.subset_eq_to_set_subset, *to_set_to_finset]
theorem finite_of_finite_insert {s : set A} {a : A} (finias : finite (insert a s)) : finite s :=
finite_subset (subset_insert a s)
theorem finite_upto [instance] (n : ) : finite {i | i < n} :=
by rewrite [-finset.to_set_upto n]; apply finite_finset
theorem to_finset_upto (n : ) : to_finset {i | i < n} = finset.upto n :=
by apply (to_finset_eq_of_to_set_eq !finset.to_set_upto)
-- question: how can I avoid the parenthesis in the notation below?
-- this didn't work: notation `𝒫`:max s := powerset s, nor variants
theorem finite_powerset (s : set A) [fins : finite s] : finite (𝒫 s) :=
assert H : (𝒫 s) = finset.to_set '[finset.to_set (#finset 𝒫 (to_finset s))],
from ext (take t, iff.intro
(suppose t ∈ 𝒫 s,
assert t ⊆ s, from this,
assert finite t, from finite_subset this,
have (#finset to_finset t ∈ 𝒫 (to_finset s)),
by rewrite [finset.mem_powerset_iff_subset, to_finset_subset_to_finset_eq]; apply `t ⊆ s`,
mem_image this (by rewrite to_set_to_finset))
(assume H',
obtain t' [(tmem : (#finset t' ∈ 𝒫 (to_finset s))) (teq : finset.to_set t' = t)],
from H',
show t ⊆ s,
begin
rewrite [-teq, finset.mem_powerset_iff_subset at tmem, -to_set_to_finset s],
rewrite -finset.subset_eq_to_set_subset, assumption
end)),
by rewrite H; apply finite_image
/- induction for finite sets -/
theorem induction_finite [recursor 6] {P : set A → Prop}
(H1 : P ∅)
(H2 : ∀ ⦃a : A⦄, ∀ {s : set A} [fins : finite s], a ∉ s → P s → P (insert a s)) :
∀ (s : set A) [fins : finite s], P s :=
begin
intro s fins,
rewrite [-to_set_to_finset s],
generalize to_finset s,
intro s',
induction s' using finset.induction with a s' nains ih,
{rewrite finset.to_set_empty, apply H1},
rewrite [finset.to_set_insert],
apply H2,
{rewrite -finset.mem_eq_mem_to_set, assumption},
exact ih
end
theorem induction_on_finite {P : set A → Prop} (s : set A) [fins : finite s]
(H1 : P ∅)
(H2 : ∀ ⦃a : A⦄, ∀ {s : set A} [fins : finite s], a ∉ s → P s → P (insert a s)) :
P s :=
induction_finite H1 H2 s
end set